Numerical Analysis Sheet 8

Methods for solving Initial Value Problems

Please hand in your answers to question 1 by 12 noon on Monday 24th November

d
1. (a) Determine the exact solution to d—i{ =y —e "for 0 <t <1with y(0) = 1.

(b) Write down Euler’s method for this IVP and show the solution of the resulting

difference equation can be written

(1—e™™)(1+h)'+ he ™

Yi = 1+h—e"h

(c) Hence determine the error assuming ¢h < 1 where 7 is the step number and show
global error at t =1 is O(h).

2. Derive Taylor’s 3rd order method. For the ODE ¢/(t) = 2ty(t), t > 0, write down iterative

schemes derived from the application of:

(a) Euler’s method;
(b) Taylor’s 2nd order method;
(c¢) Taylor’s 3rd order method.

3. Consider the initial value problem
v' =y +y, 0<t<1, withy(0)=0,(0)=1andy”(0)=0.

Transform this third-order ODE into a system of first-order ODEs. Apply Euler’s methods
to obtain a system of first-order difference equations. Finally, show how the system of

first-order difference equations can be transformed into one third-order difference equation.

4. In this question you are asked to derive two Runge-Kutta methods of order 2 that are

commonly used. Consider an iteration scheme of the form
Yir1 = Yi +af(ti,yi) +bf(ti + ¢,y + d). (1)

[Note, that the midpoint method that was derived in the lectures corresponds to the choice
a=0,b=h,c=h/2 and d=hf(t;,y:)/2.]

(a) Determine the constants a, b, ¢ and d by requiring that b = a and that the scheme in

equation (1) differs from Taylor’s method of order 2 only in terms of order O(h?)?

IThe resulting method is known as modified Euler’s method or Heun’s method.



(b) Now replace the condition b = a by b = 3a and proceed as before. The resulting

method has the property that it minimises a bound on the truncation error.

5. When Runge-Kutta 2nd order (RK2) and 4th order (RK4) schemes are used to solve the

initial value problem

d
d—i:%y, 0<t<1,  withy(0)=1

the following results for y(1) are obtained

RK2 stepsize y(1)
h=0.1 2.70905701,
h=0.05 2.71598984,
RK4
h=0.1 2.71827018,
h=0.05 2.71828108.

Find the errors of these approximations by comparing the results to the exact solution.
Confirm that the h-dependence of the errors agrees with the expected order of accuracy of
the methods.
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