
Numerical Analysis 3 Solutions for sheet 10

Boundary value problems

1. (a) This is from earlier in the course, but a good reminder:

αy(x0 − h) + βy(x0) + γy(x0 + h) =

α

[
y(x0)− hy′(x0) +

h2

2
y′′(x0)−

h3

6
y′′′(x0) +

h4

24
y(iv)(ξ1)

]
+βy(x0)

+γ

[
y(x0) + hy′(x0) +

h2

2
y′′(x0) +

h3

6
y′′′(x0) +

h4

24
y(iv)(ξ2)

]
where ξ1 ∈ (x0 − h, x0) and ξ2 ∈ (x0, x0 + h). To make this the same as y′′(x0) we

want to eliminate coefficient of y(x0):

α + β + γ = 0

and y′(x0):

−αh+ γh = 0

but coefficient of y′′(x0) should be one:

αh2/2 + γh2/2 = 1

and solving these three equations gives α = γ = 1/h2 and β = −2/h2. The coefficient

of y′′′(x0) is

−αh3/6 + γh3/6

which also vanishes. The coefficient of y(iv)(x0) is

αh4/24 + γh4/24

which is not zero. This means the error is O(h2) (we go a bit further in the notes, not

necessary here) and so

y′′(x0) ≈
y(x0 − h)− 2y(x0) + y(x0 + h)

h2
+O(h2)

(b) Since the error is proportional to y(iv)(ξ) for some ξ ∈ (x0−h, x0+h) if y(iv)(x) ≡ 0 then

there is no error and approximation is exact. This means it is exact for polynomials

of degree 3 or less.

(c) (i) Solving y′′(x) = 1 gives y(x) = x2/2 + Ax + B and if y(0) = 0 then B = 0. If

y(5) = 0 then A = −5/2. So the solution is

y(x) = x(x− 5)/2



(ii) Use formula with h = 1 at x0 = 1:

y′′(1) = 1 ≈ y(1− 1)− 2y(1) + y(1 + 1) = −2y1 + y2

after using y(0) = 0. And at x0 = 2:

y′′(2) = 1 ≈ y(2− 1)− 2y(2) + y(2 + 1) = y1 − 2y2 + y3

And at x0 = 3:

y′′(3) = 1 ≈ y(3− 1)− 2y(3) + y(3 + 1) = y2 − 2y3 + y4

And at x0 = 4:

y′′(4) = 1 ≈ y(4− 1)− 2y(4) + y(4 + 1) = y3 − 2y4

after using y(5) = 0. So the system of equations for yi, i = 1, 2, 3, 4 can be written
−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2




y1

y2

y3

y4

 =


1

1

1

1


(iii) We would have to solve this using Gaussian Elimination (why not have a go ?).

It turns out that the answers are y1 = −2, y2 = −3, y3 = −3, y4 = −2. These

are the values of y(1), y(2), y(3), y(4) from the exact solution.

Did we expect this ? Yes, because the exact solution of the ODE is a quadratic

function and the central difference approximation for the second derivative we

have used is exact for quadratics.

2. (a) Integrating up y′′(x) = 1 gives a general solution y(x) = x2/2 +Ax+B and applying

y(0) = 0 means B = 0 and then y(1) = 1 means A = −1/2. Thus the solution is

y(x) =
1

2
x(x+ 1)

(b) We apply the finite difference method to the BVP. This means the interval [0, 1] is

divided into n equal subintervals.

The mesh points are xi = ih, i = 0, 1, . . . , n, and the step size is h = 1/n.

The second derivative at the mesh points is approximated by the central difference

approximation

y′′(xi) =
y(xi + h)− 2y(xi) + y(xi − h)

h2
− h2

12
y(4)(ξi), (1)

where xi − h < ξi < xi + h.

We let yi denote the approximation to y(xi) = y(ih). We insert the approximation

(1) for the second derivative in the BVP y′′(x) = 1, neglect the error term, and thus

obtain
yi+1 − 2yi + yi−1

h2
= 1, 1 ≤ i ≤ n− 1, y0 = 0, yn = 1.



Since we know y(0) = 0 and y(1) = 1 we insert y0 = 0 and yn = 1 into the first and

last of these equations, respectively, so that we end up with

−2y1 + y2 = h2,

yi−1 − 2yi + yi+1 = h2, 1 < i < n− 1,

yn−2 − 2yn−1 = h2 − 1,

as required.

(c) If n = 4 we obtain a set of three linear equations for the unknowns y1, y2, and y3.

They can be written in matrix form as (h = 1/4)−2 1 0

1 −2 1

0 1 −2


y1y2
y3

 =


1
16
1
16

−15
16


The solutions can be found by Gaussian elimination and are given by

y1 =
5

32
, y2 =

12

32
, y3 =

21

32
.

We can see that these values agree with the exact solution at the mesh point xi = ih

since y(ih) = i(i+ 4)/32.

(d) We are asked to show that the solution of the finite difference method for general n

is given by yi = y(ih) = (ih)2/2 + ih/2 where i = 0, 1, . . . , n. This can be shown by

demonstrating that it satisfies the difference equation of the finite difference method

yi+1 − 2yi + yi−1

h2
=

h2[(i+ 1)2 − 2i2 + (i− 1)2] + h[(i+ 1)− 2i+ (i− 1)]

2h2
= 1.

This is correct for 1 ≤ i ≤ n − 1. The boundary conditions are also correct y0 = 0

and yn = 1.

The central difference approximation in equation (1) has an error term that is

proportional to the fourth derivative of the function y (at some point ξi in the interval).

The exact solution in our case is a quadratic polynomial, and hence the error term

vanishes and the approximation is exact.
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