Numerical Analysis 3 Solutions for sheet 10

Boundary value problems

1. (a) This is from earlier in the course, but a good reminder:

(b)
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where & € (xg — h,x9) and & € (9,0 + h). To make this the same as y”(zy) we
want to eliminate coefficient of y(x¢):

a+pf+v=0

and y/(z):
—ah +~vh =0
but coefficient of y”(zg) should be one:

ah?/2 +~vh*/2 =1

and solving these three equations gives & =~ = 1/h? and 8 = —2/h?. The coefficient
of " (xg) is
—ah®/6 +~vh? /6

which also vanishes. The coefficient of y(™) () is
ah/24 + yh* /24

which is not zero. This means the error is O(h?) (we go a bit further in the notes, not

necessary here) and so

y(xo — h) — 2y(xo) + y(xo + h)
12

y' (o) ~ +O0(h?)

Since the error is proportional to y™) (&) for some € € (xq—h, zo+h) if y™)(z) = 0 then

there is no error and approximation is exact. This means it is exact for polynomials

of degree 3 or less.

(i) Solving y”(z) = 1 gives y(z) = 2?/2 + Az + B and if y(0) = 0 then B = 0. If
y(5) = 0 then A = —5/2. So the solution is

y(x) = o —5)/2



(ii) Use formula with h =1 at zy = 1:
y' (1) =1ry(1=1)=2y(1) +y(1 +1) = =251 + p>
after using y(0) = 0. And at zo = 2:
V'(2) =1~y -1)=2y2) +y2+1) =y — 22 +ys
And at zo = 3:
V'3 =1~yB-1)=2yB)+yB+1) =v2 — 2us + s
And at zg = 4:
y'(4) =1=y(d—1)=2y(4) +y(d+1) = ys — 2y

after using y(5) = 0. So the system of equations for y;, i = 1,2, 3,4 can be written

-2 1 0 0 n 1
1 -2 1 0 w | |1
0 —2 1 s || 1
0 0 1 =2 m 1

(iii) We would have to solve this using Gaussian Elimination (why not have a go 7).
It turns out that the answers are y; = —2, yo = —3, y3 = —3, ys = —2. These
are the values of y(1), y(2), y(3), y(4) from the exact solution.

Did we expect this 7 Yes, because the exact solution of the ODE is a quadratic
function and the central difference approximation for the second derivative we

have used is exact for quadratics.

2. (a) Integrating up y”(x) = 1 gives a general solution y(r) = 2?/2 + Az + B and applying
y(0) = 0 means B = 0 and then y(1) = 1 means A = —1/2. Thus the solution is

y(x) = %x(a: +1)

(b) We apply the finite difference method to the BVP. This means the interval [0, 1] is
divided into n equal subintervals.
The mesh points are z; = ih, i = 0,1,...,n, and the step size is h = 1/n.
The second derivative at the mesh points is approximated by the central difference

approximation

() = WO TN BRIV D) By, )

where x; — h < & < x; + h.

We let y; denote the approximation to y(z;) = y(ih). We insert the approximation
(1) for the second derivative in the BVP 3" (x) = 1, neglect the error term, and thus

obtain
Yig1 — 2 + Vi1
72

=1,1<:<n—1, Y =0, y,=1.



Since we know y(0) = 0 and y(1) = 1 we insert yo = 0 and y, = 1 into the first and

last of these equations, respectively, so that we end up with

_2y1 + Y2 = h27
Yic1 — 2i + Vi1 = W%, I<i<n-—1,
Yn—2 — 2%71 = h2 - 17

as required.

(c) If n = 4 we obtain a set of three linear equations for the unknowns v, y2, and ys.

They can be written in matrix form as (h = 1/4)

—2 1 0 U1 %
0 1 =2| |ys -2

The solutions can be found by Gaussian elimination and are given by

) 12 21

Y2 =55, Y3 = 53

=3y 39 32

We can see that these values agree with the exact solution at the mesh point x; = th
since y(ih) = i(i +4)/32.

(d) We are asked to show that the solution of the finite difference method for general n
is given by y; = y(ih) = (ih)?/2 + ih/2 where i = 0,1,...,n. This can be shown by
demonstrating that it satisfies the difference equation of the finite difference method

Yirr — 20 +yicr P[0 +1)2 =2 + (i — 1))+ h[(i + 1) — 20+ (i — 1)]

h2 - o2 =1

This is correct for 1 < i < n — 1. The boundary conditions are also correct yg = 0
and y, = 1.

The central difference approximation in equation (1) has an error term that is
proportional to the fourth derivative of the function y (at some point ; in the interval).
The exact solution in our case is a quadratic polynomial, and hence the error term

vanishes and the approximation is exact.
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