
Numerical Analysis Solutions for sheet 2

LU decomposition, bisection method

1. (a) The augmented matrix for the system given is

Ã =

 1 −4 1 0
−3 2 3 0
4 −1 6 1

 .

(i) with no pivoting we perform the 1st Gaussian elimination step directly to give

Ã =

 1 −4 1 0
0 −10 6 0
0 15 2 1

 .

After the next step we have

Ã =

 1 −4 1 0
0 −10 6 0
0 0 11 1


and solutions are x = ( 7

55
, 3
55
, 1
11
)T .]

(ii) with partial pivoting we first swap rows 1 and 3 4 −1 6 1
−3 2 3 0
1 −4 1 0


and then step 1 of Gaussian elimination is 4 −1 6 1

0 5
4

15
2

3
4

0 −15
4

−1
2

−1
4

 ;

The next steps involve swapping rows 2 and 3 (which has the largest leading column entry)
and then doing another Gaussian elimination which results in 4 −1 6 1

0 −15
4

−1
2

−1
4

0 0 22
3

2
3

 ;

(iii) with scaled partial pivoting, we first scale each row by the largest matrix element in
the row

Ã =

 −1
4

1 −1
4

0

−1 2
3

1 0
2
3

−1
6

1 1
6


Then we see that partial pivoting requires we swap rows 1 and 2 to give

Ã =

 −1 2
3

1 0

−1
4

1 −1
4

0
2
3

−1
6

1 1
6





and now we can do step 1 of Gaussian elimination

Ã =

 −1 2
3

1 0

0 5
6

−1
2

0

0 5
18

5
3

1
6

 .

The next steps involve rescaling rows 2 and 3 by the largest matrix entry which gives

Ã =

 −1 2
3

1 0

0 1 −3
5

0

0 1
6

1 1
10

 .

and noting we do not need to swap rows, so Gaussian step 2 gives

Ã =

 −1 2
3

1 0

0 1 −3
5

0

0 0 11
10

1
10

 .

(b) Everything above is done with exact fractions. I have also made all these compu-
tations with 2-digit precision arithmetic (e.g. 2

3
= 0.67 and after every arithmetic com-

putation we round to 2 digits). I find the resulting numerical solutions using: no piv-
oting method (i) to be x = (0.091, 0.055, 0.13)T ; using partial pivoting method (ii) to
be x = (0.11, 0.053, 0.085)T ; and using scaled partial pivoting method (iii) to be x =
(0.091, 0.055, 0.12)T .

The exact answer (rounded to 2 digits) is x = (0.091, 0.055, 0.13)T . Here, the most accurate
method, contrary to what I tell you in lectures, is without pivoting. The reason is that
this is a poor example to showcase this since method (i) doesn’t require any numerical
rounding during the Gaussian elimination, only during back substitution. Method (ii) and
(iii) happens to involve lots of calculations which require rounding. What we note is that
scaled partial pivoting is almost exact.

2. Starting from the matrix

A =

 −1 1 1
2 −1 1
1 1 2

 ,

the row operations R2 → R2 − (−2)R1 and R3 → R3 − (−1)R1 lead to

A =

 1 0 0
−2 1 0
−1 0 1

 −1 1 1
0 1 3
0 2 3

 .

The final row operation R3 → R3 − 2R2 → results in

A =

 1 0 0
−2 1 0
−1 2 1

 −1 1 1
0 1 3
0 0 −3

 .

This is the required LU decomposition of the matrix A. We can now solve the system
Ax = LUx = b by setting Ux = y and solving first Ly = b by forward substitution and



then Ux = y by backward substitution. The three cases for the vector b are

b =

10
0

 y1 = 1 = 1
y2 = 0 + 2y1 = 2
y3 = 0 + y1 − 2y2 = −3

x3 = −y3/3 = 1
x2 = y2 − 3x3 = −1
x1 = −y1 + x2 + x3 = −1

x =

 −1
−1
1


b =

01
0

 y1 = 0 = 0
y2 = 1 + 2y1 = 1
y3 = 0 + y1 − 2y2 = −2

x3 = −y3/3 = 2/3
x2 = y2 − 3x3 = −1
x1 = −y1 + x2 + x3 = −1/3

x =

 −1/3
−1
2/3


b =

01
0

 y1 = 0 = 0
y2 = 0 + 2y1 = 0
y3 = 1 + y1 − 2y2 = 1

x3 = −y3/3 = −1/3
x2 = y2 − 3x3 = 1
x1 = −y1 + x2 + x3 = 2/3

x =

 2/3
1

−1/3


The three results provide the column vectors of the inverse matrix A−1 which has the form

A−1 =

 −1 −1
3

2
3

−1 −1 1
1 2

3
−1

3

 .

3. The pivot element a11 for the row operations of the first step in the LU -decomposition for
the matrix A is zero. Hence the first row has to be interchanged either with row 2 or with
row 3. (In partial pivoting we would swap with row 2 since it has the bigger element in the
first column). Below we list both possible solutions.

If we swap row 1 with row 2 then we obtain after the further row operations R3 → R3− 1
2
R1

and R3 → R3 + 2R2 the following decomposition

PA =

 0 1 0
1 0 0
0 0 1

  0 1 2
4 2 3
2 −1 4

 =

 4 2 3
0 1 2
2 −1 4

 =

 1 0 0
0 1 0
1
2

−2 1

  4 2 3
0 1 2
0 0 13

2

 = LU.

If we swap row 1 with row 3 then we obtain after the further row operations R2 → R2−2R1

and R3 → R3 − 1
4
R2 the following decomposition

PA =

 0 0 1
0 1 0
1 0 0

  0 1 2
4 2 3
2 −1 4

 =

 2 −1 4
4 2 3
0 1 2

 =

 1 0 0
2 1 0
0 1

4
1

  2 −1 4
0 4 −5
0 0 13

4

 = LU.

4. Simple: P−1 = (P1P2)
−1 = P−1

2 P−1
1 = P T

2 P
T
1 = (P1P2)

T = P T using standard results for
matrices.

5. Perfect candidate for a proof by contradiction. So assume A = L1U1 = L2U2 where
diag{Li} = (1, 1, . . . , 1)T for i = 1, 2 and L1 ̸= L2, U1 ̸= U2. It follows that

L−1
2 L1 = U−1

1 U2

Now, from Q5, we infer U−1
1 is upper triangular and the product U−1

1 U2 is upper triangular
also. We similarly infer that L−1

2 L1 is lower triangular. Now L−1
2 must have ones on its

diagonal, otherwise L−1
2 L2 would not be I the Identity, since L2 has ones on it’s diagonal.

Therefore
L−1
2 L1 = I = U−1

1 U2

and so
L1 = L2, and U1 = U2

which is a contradiction.



6. (a) Since A is non-singular, we can write it as A = LU where L is lower triangular with
diag{L} = (1, 1, . . . , 1)T and U is upper triangular with diag{U} = (u11, u22, . . . , unn)

T .
We can write

U = DŨ

where D = diag{uii} is a diagonal matrix with entries (D)ii = uii and it follows that

(Ũ)ij = uij/uii

remains an upper triangular matrix but with diag{U} = (1, 1, . . . , 1)T . Now, A =
LDŨ and since A is symmetric A = AT and so

LDŨ = (LDŨ)T = ŨTDLT .

Using the fact that ŨT is lower triangular with ones along the diagonal and that the
LU -decomposition is unique (Q3) it must be that ŨT = L and so A = LDLT as
required.

(b) We have

xTAx = xTLDLTx = (LTx)TD(LTx) =
n∑

i=1

l2i uii

where we have written the ith component of (LTx)i = li. This can only be positive
for all x if uii > 0 for all i.

(c) If uii, the diagonal elements of D are all positive, then we can write, from (a) A =
L
√
D
√
DLT = QQT where Q = L

√
D. Here

√
D is the diagonal matrix with entries√

uii.

Note: This decomposition is known as a “Cholesky decomposition”.

7. (a) The function f(x) = x3 − x− 1/4 is a cubic polynomial and has at most 3 real roots.

The curve of x3 − x is easy to plot: it goes through -1,0,1. Subtracting 1/4 from this
moves the curve down by 1/4 and we can see from an overlaid sketch that the root
at +1 will move right and the two roots at -1,0 will moved towards each other (and
possibly vanish !)

It is helpful to locate possible maxima and minima of the function. The first two
derivatives are f ′(x) = 3x2 − 1 and f ′′(x) = 6x. The first derivative vanishes if
x = ±1/

√
3. Furthermore f ′′(1/

√
3) > 0 and f ′′(−1/

√
3) < 0. We conclude that:

f(x) has a maximum at x = −1/
√
3 where f(−1/

√
3) = (8− 3

√
3)/(12

√
3) > 0.

f(x) has a minimum at x = 1/
√
3 where f(1/

√
3) = (−8− 3

√
3)/(12

√
3) < 0.

We try some other values of x and find f(−1) < 0, f(1) < 0, and f(2) > 0. Hence
there is one sign change in each of the intervals [−1,−1/

√
3], [−1/

√
3, 1/

√
3], and

[1, 2]. This shows that the polynomial has indeed three roots, and one of them is in
the interval [1, 2].

(b) The starting interval [1, 2] has length one, and after n steps of the bisection method
the maximal error is 2−n. We require 2−n < 10−4. Taking the logarithm of this
relation results in

n >
4 ln(10)

ln(2)
≈ 13.29 .

We conclude that 14 steps of the bisection method guarantee that the error is smaller
than 10−4.



(c) The required intervals were already given in part (a) where it was found that each of
the intervals [−1,−1/

√
3] and [−1/

√
3, 1/

√
3] contains exactly one root.

8. The following table shows the first five steps of the bisection method for finding the root
of f(x) = x2 − 2 = 0 in the interval [1, 2].

n an xn bn f(an) f(xn) f(bn) max. err.

1 1.00000 1.50000 2.00000 -1.00 0.25 2.00 2−1

2 1.00000 1.25000 1.50000 -1.00 -0.44 0.25 2−2

3 1.25000 1.37500 1.50000 -0.44 -0.11 0.25 2−3

4 1.37500 1.43750 1.50000 -0.11 0.07 0.25 2−4

5 1.37500 1.40625 1.43750 -0.11 -0.02 0.07 2−5

We conclude that the root has to be in the interval [1.40625, 1.43750], and we can specify
only the first two digits of the root after five iterations of the method. This shows that the
convergence of the method is quite slow.

9. Since tanh(x) < 1 the two curves of y = tanh(x) and y = µ/x intersect at x = x∗ when
µ/x∗ < 1 implying x∗ > µ. We also know that tanh(x) < x for x > 0. The root x∗ is to
the right of the point where y = µ/x intersects y = x which is when x =

√
µ. I.e. x∗ >

√
µ

as well as x∗ > µ. So we have established two lower bounds and, to make Bisection as
efficient as possible we want the largest lower bound. So if µ ≤ 1, this is a =

√
µ and if

µ > 1 this is a = µ.

An upper bound is harder. We can also use the definition of tanh to write

tanh(x) =
ex − e−x

ex + e−x
>

ex − e−x

ex
= 1− e−2x

and, for x > 0, e−2x < 1/x so that tanh(x) > 1−1/x. The intersection of the lines y = µ/x
with tanh(x) is therefore to the left of the intersection of the lines y = µ/x with y = 1−1/x
which occurs at x = µ+ 1.

10. (a) After one step of Gaussian elimination the elements of A(1) are, for i, j = 2, . . . , n

a
(1)
ij = aij −

ai1
a11

a1j.

We are asked to show that

|a(1)ii | ≥
n∑

j=2

̸=i

|a(1)ij |

for i = 2, . . . , n. In other words we need to show∣∣∣∣aii − ai1
a11

a1i

∣∣∣∣ ≥ n∑
j=2

̸=i

∣∣∣∣aij − ai1
a11

a1j

∣∣∣∣ .
Start with the RHS, and use |a+ b| ≤ |a|+ |b| to get

n∑
j=2

̸=i

∣∣∣∣aij − ai1
a11

a1j

∣∣∣∣ ≤ n∑
j=2

̸=i

|aij|+
|ai1|
|a11|

n∑
j=2

̸=i

|a1j|.



Now since row diagonal dominance of A implies both

n∑
j=2

̸=i

|aij|+ |ai1| ≤ |aii|, and
n∑

j=2

̸=i

|a1j|+ |a1i| ≤ |a11|,

(recalling that i ≥ 2) then we have

n∑
j=2

̸=i

∣∣∣∣aij − ai1
a11

a1j

∣∣∣∣ ≤ |aii| − |ai1|+
|ai1|
|a11|

(|a11| − |a1i|) = |aii| −
|ai1|
|a11|

|a1i|

But |a| − |b| ≤ |a− b| and so

|aii| −
|ai1|
|a11|

|a1i| ≤
∣∣∣∣aii − ai1

a11
a1i

∣∣∣∣
and we are done.

(b) If one step of Gaussian elimination preserves diagonal dominance, as we have shown,
then it is preserved through every step. This means the fully reduced upper triangular
matrix U is diagonally dominant.
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