
Numerical Analysis Solutions for sheet 3

Fixed-Point Iteration, Newton-Raphson Method

1. ASSESSED HW MODEL SOLUTION

(a) (i) Perform row operation R2 → R2 − 100R1 gives[
0.01 1.6 32.1

0 −159 −3.19× 103

]

since using 3 digits, so 22− 3210 = 3188 rounds to −3190. Then y = −3190/159 =

20.1 after rounding and 0.01x = 32.1 − 32.2 = −0.1 after rounding meaning that

x = −0.1/0.01 = −10. This is way out.

(ii) Partial pivoting requires us to swap rows before eliminating. So[
1 0.6 22

0.01 1.6 32.1

]

and doing R2 → R2 − 0.01R1 gives[
1 0.6 22

0 1.59 31.9

]

after rounding. Now y = 31.9/1.59 = 20.1 after rounding and back substituting

x = 22− 12.1 = 9.9. This is much better.



(b) Perform LU decomposition in steps
1 −1 0 0

1 1 −1 0

0 1 1 −1

0 0 1 1

 =


1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1




1 −1 0 0

0 2 −1 0

0 1 1 −1

0 0 1 1



=


1 0 0 0

1 1 0 0

0 1
2

1 0

0 0 0 1




1 −1 0 0

0 2 −1 0

0 0 3
2

−1

0 0 1 1



=


1 0 0 0

1 1 0 0

0 1
2

1 0

0 0 2
3

1




1 −1 0 0

0 2 −1 0

0 0 3
2

−1

0 0 0 5
3

 = LU.

Solve in two steps: Ly = b then Ux = y. So first
1 0 0 0

1 1 0 0

0 1
2

1 0

0 0 2
3

1




y1

y2

y3

y4

 =


1

1

1

1

 .

Forward substitution easily gives y = (1, 0, 1, 1
3
)T . Next

1 −1 0 0

0 2 −1 0

0 0 3
2

−1

0 0 0 5
3




x1

x2

x3

x4

 =


1

0

1

1
3

 .

Back substitution results in x = (7
5
, 2
5
, 4
5
, 1
5
)T .

(c) (Unseen )

The trick is to see that B = PAP where

P =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


is such that P−1 = P . So Bz = b is A(Pz) = Pb = b which means Pz = x and so

z = Px. Only now do we need the calculation of x from part (b). So z = (1
5
, 4
5
, 2
5
, 7
5
)T .



2. (a) The function g(x) = 2−x = exp(−x ln 2) has values g(1/3) = 0.7937 and g(1) = 0.5 at

the end points of the interval [1/3, 1]. It is a monotonously decreasing function and we

conclude that g(x) ∈ [1/3, 1] if x ∈ [1/3, 1]. In addition, g(x) is differentiable and its

derivative g′(x) = − exp(−x ln 2) ln 2 has values g′(1/3) = −0.5502 and g′(1) = −0.3466

at the end points of the interval. The derivative g′(x) is also monotonous and hence

|g′(x)| ≤ |g′(1/3)| < 1 if x ∈ [1/3, 1] . (1)

All conditions of the fixed-point theorem are satisfied and we conclude that there is

a unique fixed point x∗ in the interval [1/3, 1], and that the fixed point iteration

xn+1 = g(xn) converges to x∗ for any initial point x0 ∈ [1/3, 1].

(b) We apply the mean value theorem to obtain an upper bound for the number of iterations

that are required to determine the fixed point to an accuracy of 10−4:

|xn − x∗| = |g(xn−1)− g(x∗)| = |g′(ξn−1)| |xn−1 − x∗| , (2)

where ξn−1 is between xn−1 and x∗ (and depends on xn−1). We know that |g′(ξn−1)| ≤
|g′(1/3)| because of inequality (1), and by using relation (2) iteratively we find

|xn − x∗| ≤ |g′(1/3)|n |x0 − x∗| ≤ 2

3
|g′(1/3)|n .

This error has to be smaller than 10−4, and we obtain the following condition for n

2

3
|g′(1/3)|n ≤ 10−4 =⇒ n > [−4 ln(10)− ln(2/3)]/ ln |g′(1/3)| ≈ 14.74 .

We conclude that 15 iterations are an upper bound.

3. (a) E.g. use plot (x,coth(x)) in wolframalpha.com Since coth(x) > 1 for x > 0, the root

must lie to the right of x = 1.

(b) We need to show that the conditions of the fixed point theorem are satisfied. First, we

need to show that for x ∈ (1, 2), then g(x) = coth(x) ∈ [1, 2] also. We note that g(x)

is monotonically decreasing and is bounded below by 1. So we are only concerned with

g(1) = coth(1) ≈ 1.31 < 2. I.e. g(x) ∈ (1, 2). Second, we need to check that |g′(x)| < 1

for x ∈ (1, 2). Here g′(x) = 1/ sinh2(x). This is monotonically decreasing and its largest

value is at x = 1 where g′(1) = 1/ sinh2(1) ≈ 0.74. And so we are done: the FPT

guarantees that an initial point x0 ∈ (1, 2) will converge to a unique x∗ ∈ (1, 2).

(c) The order of convergence is 1 (linear) since g′(x) = 1/ sinh2(x) ̸= 0 and so certainly

not zero at x = x∗. The asymptotic error constant for linear convergence is (from

notes) |g′(x∗)|/1! which takes max/min values of 0.74, 0.076 in interval and so these are

upper/ower bounds on the asymptotic error constant.

(d) The last column provides us with an estimate of the asymptotic error constant since we

do not have the exact root x∗.



n x0 |xn − xn−1|/|xn−1 − xn−2|

0 1.5 -

1 1.1047 -

2 1.2465 0.3587

3 1.1802 0.4675

4 1.2084 0.4253

5 1.1958 0.4468

(e) Newton is quadratic (in general) so let f(x) = x tanhx− 1 be such that f(x∗) = 0. Now

Newton is

xn+1 = xn −
xn tanhxn − 1

tanhxn + xnsech
2xn

.

4. (a) The first iteration scheme uses the function g1(x) = 20x/21 + 1/x2. We have

g1(x)− x =
21− x3

21x2
= 0 .

This shows that x∗ = 211/3 is the only fixed point. The convergence properties are

investigated by evaluating the derivative of g1(x) at the fixed point.

g′1(x
∗) =

20(x∗)3 − 42

21(x∗)3
=

18

21
.

This is a constant between 0 and 1 and hence the convergence is linear.

(b) Now g2(x) = x− (x3 − 21)/(3x2) and the fixed point equation is

g2(x)− x = −x3 − 21

3x2
= 0 .

As before x∗ = 211/3 is the only fixed point. We evaluate the derivative of g2(x) at x
∗

g′2(x
∗) =

2(x∗)3 − 42

3(x∗)3
= 0 .

This shows that the convergence is faster than linear. To find the order of convergence

we need to evaluate also the second derivative

g′′2(x
∗) =

42

(x∗)4
̸= 0 .

The convergence is quadratic since the first derivative vanishes at the fixed point and

the second derivative does not vanish at the fixed point.

(c) The third iteration scheme uses g3(x) = (21/x)1/2, and the fixed point equation can be

written in the form

g3(x)− x =
211/2 − x3/2

x1/2
= 0 .



Also in this case there is only one solution x∗ = 211/3. We consider the derivative

g′3(x
∗) = − 211/2

2(x∗)3/2
= −1

2
.

We find that the convergence is linear, but quicker than for g1(x) since the derivative at

x∗ has a smaller modulus.

(d) Finally, g4(x) = x− (x4 − 21x)/(x2 − 21) and the fixed point equation takes the form

g4(x)− x = −x(x3 − 21)

x2 − 21
= 0 .

Now we have two fixed points, x∗
1 = 211/3 and x∗

2 = 0. Starting with x0 = 1 we find that

the next value in the iteration scheme is x1 = 0, and from then on xn = 0 for n ≥ 1.

This shows that the iteration scheme converges to the fixed point x∗
2 = 0 if x0 = 1 and

not to x∗
1 = 211/3.

We conclude that only the first three iteration schemes converge to 211/3. The quickest scheme

uses g2(x), and the iteration with g3(x) is quicker than that with g1(x).

5. (a) The Newton scheme is

xn+1 = xn − tanhxn/sech
2xn ≡ xn − sinhxn coshxn ≡ xn − 1

2
sinh 2xn

The results of iterating are

n xn |xn|/|xn−1|3

0 0.5 -

1 −8.760× 10−2 -0.7008

2 4.488× 10−4 -0.6676

3 −6.028× 10−11 -0.6666

(b) We set g(x) = x− 1
2
sinh 2x, which is the RHS of the Newton iterative step. Then

g′(x) = 1− cosh 2x

and g′(0) = 0 as we expect from Newton. Then g′′(x) = −2 sinh 2x so that g′′(0) = 0 also.

Moving on, g′′′(x) = −4 cosh 2x so that g′′′(0) = −4. Therefore we expect the scheme to

be cubically convergent (α = 3) and the asymptotic error constant, λ = g′′′(0)/3! = −2/3.

These calculations match the tabulated results since x∗ = 0 so the 3rd column represents

ratio of error at nth step to error at previous step raised to the power 3. The ratio tends

towards 2/3.



(c) We cannot use the section of the notes which estimates the interval of convergence directly

because this assumes quadratic convergence and here we have cubic convergence. But

the same approach applies and, by Taylors theorem we have

|xn+1 − x∗| = |g′′′(ξn)|
3!

|xn − x∗|3

for some ξn between x∗ and xn. We want the error at the (n+ 1)th step to be less that

at the nth step and so
|g′′′(ξ0)|

6
|x0 − x∗|2 < 1

is required at the first step. In our case g′′′(ξ0) = −4 cosh 2ξ0 and x∗ = 0. So we want

|x0| <
√

6/4 cosh ξ0

for some ξ0 ∈ (−x0, x0). The maximum value of cosh ξ0 in this interval is coshx0, so we

conclude that

|x0| <
√
6/4 coshx0

is sufficient to ensure convergence.

(d) The first Newton step is x1 = x0 − 1
2
sinh 2x0. Assuming x0 > 0 we want −x0 < x1 < x0

to ensure we are closer to the root after the first step. This means −x0 < x0 − 1
2
sinh 2x0

and gives 4x0 > sinh 2x0. Not asked for, but this puts |x0| < 1.088 (roughly).

With x0 = 1.5 we find x1 = −3.509, x2 = 275.6 and this is clearly diverging.

6. The zero of f(x) = (4x − 7)/(x − 2) is at x∗ = 7/4 = 1.75. In the graphical interpretation

of the Newton-Raphson method one draws a tangent to the graph of the function f(x) at

position x = xn. The point where this tangent intersects the x-axis is the next iteration point

xn+1. The following figure shows a plot of the function f(x). It has a pole at x = 2.

We can see from the plot that the Newton iteration scheme diverges if the initial point x0 > 2,

because then the next iteration points are at larger and larger values of x. This is illustrated

by the tangent to the graph at position x = 2.5. The iteration scheme also diverges if the

value of x0 is so small that the next iteration point satisfies x1 ≥ 2. To find the border of this

region we determine the value of x0 for which the next iteration point would be x1 = 2

2 = x0 −
f(x0)

f ′(x0)
=⇒ 0 = (x0 − 2) (4x0 − 6) .

The value x0 = 2 is at the pole and the tangent at x0 = 1.5 is shown in the figure. One can

see that it intersects the x-axis at x = 2.

We conclude that the Newton iteration method diverges if x0 ≤ 1.5 or x0 ≥ 2. On the other

hand, if x0 ∈ (1.5, 2) then one can convince oneself from the figure that all further iteration

points also lie inside this interval and we would expect that the iteration scheme converges.

Hence we expect convergence in the cases i) 1.625 ii) 1.875 and iv) 1.95, and divergence in

the cases iii) 1.5 and v) 3. This is indeed the correct answer.
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Figure 1: A plot of the function f(x) = (4x−7)/(x−2). Two tangents are included, one at x = 1.5

and one at x = 2.5. The dotted vertical line denotes the pole at x = 2.

7. We consider the case that f(x) has a simple zero at x = x∗ such that f(x) = (x − x∗) q(x)

where q(x∗) ̸= 0. Then f ′(x∗) ̸= 0. The iteration scheme has the form of a fixed point iteration

with

g(x) = x− f(x)

f ′(x)
− f ′′(x) f 2(x)

2 f ′3(x)
.

To find the order of convergence we evaluate the derivative of g(x)

g′ = 1− 1 +
f f ′′

f ′2
− f 2 f ′′′ + 2f f ′ f ′′

2 f ′3
+

3 f 2 f ′′2

2 f ′4
= f 2 3 f

′′2 − f ′ f ′′′

2f ′4
.

We see that g′(x) has a zero at x = x∗ whose multiplicity is at least 2 because of the f 2(x)

term. (The fraction multiplying f 2 is in general not zero at x = x∗, but it can be in special

cases). Hence the next derivative g′′(x) also vanishes at x = x∗ and the order of convergence

is at least cubic.

8. We apply one step of the Newton iteration scheme to the function f(x) = x2 − a and denote

the initial guess by x0

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

x2
0 − a

2x0

=
1

2

(
x0 +

a

x0

)
.

This is the required formula. To find the nth root of a number a we consider f(x) = xn − a

and obtain

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

xn
0 − a

n xn−1
0

=
n− 1

n
x0 +

a

n xn−1
0

.



We apply this formula to estimate 3
√
9 with an initial guess of x0 = 2 and find

3
√
9 ≈ 4

3
+

9

12
=

25

12
= 2.083333 .

The actual value is 3
√
9 = 2.08008.

9. (a) Letting xn → x∗ it is easy to see x∗ = 0 satisfies the relation. To determine the order of

convergence we let g(x) = (2−
√
4− x2)1/2 and then

g′(x) =
x/2√

4− x2(2−
√
4− x2)1/2

and we should take the limit as x → 0+ to determine g′(0). This gives

g′(0) = lim
x→0+

x/2

2(2− 2(1− (x/2)2)1/2)1/2

after retaining only the terms that count at the end. Then using binomial expansions

we get

g′(0) = lim
x→0+

x/2

2(x/2)
= 1/2

So the order of convergence is linear and the asymptotic error constant is 1/2. That is,

we can anticipate that xn ≈ xn−1/2 as n → ∞.

(b) If we multiply both top and bottom by
√
2 +

√
4− x2

n we are there after putting the

numerator under a single square root and multiplying out factors. Simples.

(c) Here’s the results:

method 1 method 2

n xn 2n+1xn xn 2n+1xn

1 0.7649 3.059 0.7652 3.061

2 0.3899 3.119 0.3900 3.120

3 0.1949 3.118 0.1960 3.136

4 0.1000 3.200 0.09815 3.141

Table 1: These numbers were produced by my daughter, Hazel, on her calculator ! She retained 4

significant figures after each step on her calculator.

(d) In both schemes xn ∼ π/2n+1 → 0. In the second scheme we are dividing a small number

by approximately 2 at each step and this is robust. In the first scheme, the final step of

the calculation is roughly
√

(xn/2)2 which is prone to loss of accuracy due to round off

errors.
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