Numerical Analysis Solutions for sheet 3

Fixed-Point Iteration, Newton-Raphson Method

1. ASSESSED HW MODEL SOLUTION

(a) (1)

Perform row operation Ry, — Ry — 100R; gives

0.01 1.6 32.1
0 —159 —3.19 x 103

since using 3 digits, so 22 — 3210 = 3188 rounds to —3190. Then y = —3190/159 =
20.1 after rounding and 0.01z = 32.1 — 32.2 = —0.1 after rounding meaning that
r = —0.1/0.01 = —10. This is way out.

Partial pivoting requires us to swap rows before eliminating. So
1 06 22

0.01 1.6 32.1
and doing Ry — Ry — 0.01R; gives

1 06 22

0 1.59 31.9
after rounding. Now y = 31.9/1.59 = 20.1 after rounding and back substituting
xr =22—12.1=9.9. This is much better.



(b) Perform LU decomposition in steps

(1 -1 0 0] 1 0o00][t -1 0 o]
1 1 -1 0 1 100[f0 2 =1 0
01 1 -1 Joot1o|llo 1 1 —1
00 1 1 00010 0 1 1
(10 0 0] [1 -1 0]
1 100/]0 2 =1 0
~ o Lroj|lo o 2 -1
000 1/[0 0 1 1]
(1000t -1 0 o]
_ [t 1roofjo 2 -1 0 i
03100 0 2 -1
003 1[0 0 0 3
Solve in two steps: Ly = b then Ux =y. So first
(10 0 0] [u] 1]
110 0] |y 1
0 5 1 0f |ys I
0 0 5 1| | 1]

Forward substitution easily gives y = (1,0, 1, %)T Next

1 -1 0 o] [= 1
0 2 —1 0|2 0
00 ¢ -1 |=| |1

0 0 0 3| |7 H

Back substitution results in x = (£, 2,4, 1)7.
(¢) (Unseen )
The trick is to see that B = PAP where

0
0
1
0

[0
0
0

1

0 1]
10
00
0 0]

is such that P~! = P. So Bz = b is A(Pz) = Pb = b which means Pz = x and so

z = Px. Only now do we need the calculation of x from part (b). So z = ( 2 DT,

142
5757575



2.

(a)

The function g(z) = 27% = exp(—z1n2) has values ¢g(1/3) = 0.7937 and ¢(1) = 0.5 at
the end points of the interval [1/3,1]. It is a monotonously decreasing function and we
conclude that g(z) € [1/3,1] if x € [1/3,1]. In addition, g(z) is differentiable and its
derivative ¢'(z) = — exp(—xzIn2) In2 has values ¢’(1/3) = —0.5502 and ¢'(1) = —0.3466

at the end points of the interval. The derivative ¢'(z) is also monotonous and hence
'@ <lg(1/3) <1 it zell/3,1]. (1)

All conditions of the fixed-point theorem are satisfied and we conclude that there is
a unique fixed point z* in the interval [1/3,1], and that the fixed point iteration

Tni1 = g(z,) converges to x* for any initial point xy € [1/3,1].

We apply the mean value theorem to obtain an upper bound for the number of iterations

that are required to determine the fixed point to an accuracy of 10~%:

[ — 27| = [g(zn—1) = g(z")| = g (€n-1)[ 201 — 271, (2)

where &, is between x,_; and z* (and depends on z,,_1). We know that |¢/(§,-1)] <

|g'(1/3)] because of inequality (1), and by using relation (2) iteratively we find
o0 — 2] < |9/ (/)" 7o — | < 21 (1/3)]"
This error has to be smaller than 10~%, and we obtain the following condition for n
%]g’(1/3)|” <10* = n>[-4In(10) —In(2/3)]/In|¢'(1/3)| ~ 14.74.
We conclude that 15 iterations are an upper bound.

E.g. use plot (x,coth(x)) in wolframalpha.com Since coth(x) > 1 for > 0, the root
must lie to the right of z = 1.

We need to show that the conditions of the fixed point theorem are satisfied. First, we
need to show that for z € (1,2), then g(z) = coth(z) € [1,2] also. We note that g(x)
is monotonically decreasing and is bounded below by 1. So we are only concerned with
g(1) = coth(1) = 1.31 < 2. Le. g(x) € (1,2). Second, we need to check that |¢'(z)] < 1
for 2 € (1,2). Here ¢/(x) = 1/sinh®*(z). This is monotonically decreasing and its largest
value is at = 1 where ¢/(1) = 1/sinh?(1) ~ 0.74. And so we are done: the FPT
guarantees that an initial point zq € (1,2) will converge to a unique z* € (1, 2).

The order of convergence is 1 (linear) since ¢’(x) = 1/sinh*(x) # 0 and so certainly

*

not zero at x = z*. The asymptotic error constant for linear convergence is (from
notes) |¢'(z*)|/1! which takes max/min values of 0.74, 0.076 in interval and so these are

upper/ower bounds on the asymptotic error constant.

The last column provides us with an estimate of the asymptotic error constant since we

do not have the exact root z*.



n| x |Tn — Tp_1|/|Tn_1 — Tp_s
0 1.5 -

1] 1.1047 -

2 | 1.2465 0.3587

3 | 1.1802 0.4675

4 11.2084 0.4253

5 | 1.1958 0.4468

(e) Newton is quadratic (in general) so let f(z) = x tanhz — 1 be such that f(z*) = 0. Now

Newton is
r,tanhz, — 1

Tpy1 = Tn — .
tanh x,, + z,sech’z,,

(a) The first iteration scheme uses the function g;(x) = 20x/21 + 1/2?. We have

21 — 23
(1)~ =g =10

2122

This shows that z* = 21Y/2 is the only fixed point. The convergence properties are
investigated by evaluating the derivative of ¢;(x) at the fixed point.

)3

e = R SR =
This is a constant between 0 and 1 and hence the convergence is linear.
(b) Now go(x) =z — (2* — 21)/(32?%) and the fixed point equation is
_x3 —21

() — o = 5.7 =0.

As before 2* = 21'/3 is the only fixed point. We evaluate the derivative of gy(z) at z*

2(z*)? — 42

eI 0.

Gola”) =
This shows that the convergence is faster than linear. To find the order of convergence

we need to evaluate also the second derivative

. 42
gy (2") = — #0.

(%)

The convergence is quadratic since the first derivative vanishes at the fixed point and

the second derivative does not vanish at the fixed point.

(c) The third iteration scheme uses gs3(z) = (21/2)'/2, and the fixed point equation can be

written in the form
211/2 _ 173/2

gs(I)—I:—xl/Q =0.



Also in this case there is only one solution z* = 21/3. We consider the derivative

S o212
gg@)-‘m-‘@

We find that the convergence is linear, but quicker than for g;(x) since the derivative at
x* has a smaller modulus.

(d) Finally, g4(z) = z — (2* — 21z)/(2* — 21) and the fixed point equation takes the form

z(x® — 21)
g(w) —w = =55 =0

Now we have two fixed points, 27 = 21'/% and x5 = 0. Starting with 2o = 1 we find that
the next value in the iteration scheme is z; = 0, and from then on z, = 0 for n > 1.
This shows that the iteration scheme converges to the fixed point 25 = 0 if 2y = 1 and

not to z} = 213,

We conclude that only the first three iteration schemes converge to 21'/3. The quickest scheme

uses go(), and the iteration with g3(z) is quicker than that with g;(x).

5. (a) The Newton scheme is
Tpy1 = 2, — tanh x, /sech®z, = z,, — sinh 2, coshz, =z, — %sinh 21,

The results of iterating are

n n |znl /|20 |
0 0.5 -

1| —8760x 1072 | -0.7008

2| 4488 %107 | -0.6676

3| —6.028 x 1071 | -0.6666

(b) We set g(z) =« — 5 sinh 2z, which is the RHS of the Newton iterative step. Then
g'(x) =1— cosh2z

and ¢’(0) = 0 as we expect from Newton. Then ¢”(x) = —2sinh 2z so that ¢”(0) = 0 also.
Moving on, ¢"”(x) = —4 cosh 2z so that ¢”’(0) = —4. Therefore we expect the scheme to
be cubically convergent (v = 3) and the asymptotic error constant, A = ¢"’(0)/3! = —2/3.
These calculations match the tabulated results since 2* = 0 so the 3rd column represents

ratio of error at nth step to error at previous step raised to the power 3. The ratio tends
towards 2/3.



(c) We cannot use the section of the notes which estimates the interval of convergence directly
because this assumes quadratic convergence and here we have cubic convergence. But

the same approach applies and, by Taylors theorem we have

19" ()]

st — a7 = L o —

for some ¢,, between z* and z,,. We want the error at the (n + 1)th step to be less that

*|3

at the nth step and so
19" (%)

Ty — P < 1

is required at the first step. In our case ¢”"(§y) = —4 cosh 2§, and z* = 0. So we want

|| < 4/6/4 cosh &

for some &y € (—xg,xp). The maximum value of cosh & in this interval is cosh xg, so we

|zo| < £/6/4 coshx

is sufficient to ensure convergence.

conclude that

(d) The first Newton step is x; = x¢ — %sinh 2x9. Assuming z¢ > 0 we want —z¢ < x1 < Tg
to ensure we are closer to the root after the first step. This means —xg < xg — %sinh 210
and gives 4z > sinh 2. Not asked for, but this puts |zg| < 1.088 (roughly).

With 2y = 1.5 we find 2y = —3.509, x5 = 275.6 and this is clearly diverging.

6. The zero of f(x) = (4o —7)/(x — 2) is at * = 7/4 = 1.75. In the graphical interpretation
of the Newton-Raphson method one draws a tangent to the graph of the function f(x) at
position x = x,,. The point where this tangent intersects the z-axis is the next iteration point

Zpt1. The following figure shows a plot of the function f(x). It has a pole at x = 2.

We can see from the plot that the Newton iteration scheme diverges if the initial point x¢ > 2,
because then the next iteration points are at larger and larger values of x. This is illustrated
by the tangent to the graph at position x = 2.5. The iteration scheme also diverges if the
value of g is so small that the next iteration point satisfies z; > 2. To find the border of this

region we determine the value of xy for which the next iteration point would be x; = 2

~ J(=@o)
" F(wo)

The value zy = 2 is at the pole and the tangent at o = 1.5 is shown in the figure. One can

2=x

see that it intersects the z-axis at z = 2.

We conclude that the Newton iteration method diverges if o < 1.5 or ¢y > 2. On the other
hand, if zy € (1.5,2) then one can convince oneself from the figure that all further iteration
points also lie inside this interval and we would expect that the iteration scheme converges.
Hence we expect convergence in the cases i) 1.625 ii) 1.875 and iv) 1.95, and divergence in

the cases iii) 1.5 and v) 3. This is indeed the correct answer.



Figure 1: A plot of the function f(z) = (4o —7)/(x —2). Two tangents are included, one at x = 1.5

and one at x = 2.5. The dotted vertical line denotes the pole at z = 2.

7. We consider the case that f(z) has a simple zero at x = z* such that f(z) = (x — 2*) ¢(x)
where g(z*) # 0. Then f’(z*) # 0. The iteration scheme has the form of a fixed point iteration

with , )
s — o 1) @) Pl
f'x) 2 f%(2)
To find the order of convergence we evaluate the derivative of g(z)
ff// f2 f/// + 2f f/ f// 3f2 f//2 ) 3f//2 _ f/ f///
712 - 9 f73 + 9 =f 2 f4 :

We see that ¢’(x) has a zero at * = x* whose multiplicity is at least 2 because of the f?(x)

g=1—-1+

term. (The fraction multiplying f? is in general not zero at x = x*, but it can be in special
cases). Hence the next derivative ¢”(x) also vanishes at © = z* and the order of convergence

is at least cubic.

8. We apply one step of the Newton iteration scheme to the function f(x) = 2? — a and denote

the initial guess by xq

B f(zo) w—a 1 a
1 = X f’(aj‘o) =Xy 2x0 = 5 o + 0 .

This is the required formula. To find the nth root of a number a we consider f(z) = 2" —a

and obtain F(a0) .
T x —a n — a
L = : = Lo + n—1"°

T = Xn — — — — =
T () ‘ nay n n




We apply this formula to estimate v/9 with an initial guess of zo = 2 and find

, 4 9 25
V9 BETIEED 083333

The actual value is v/9 = 2.08008.

9. (a) Letting x,, — x* it is easy to see x* = 0 satisfies the relation. To determine the order of
convergence we let g(z) = (2 — v4 — 22)"/? and then

g'(x) = /2

Vis 22— Vi)

and we should take the limit as  — 0" to determine ¢’(0). This gives

) — T z/2
90 = I e = e

after retaining only the terms that count at the end. Then using binomial expansions

we get

"(0) = lim z/2
9(0) = lim 5075

So the order of convergence is linear and the asymptotic error constant is 1/2. That is,

=1/2

we can anticipate that x, ~ z,_1/2 as n — 0.

(b) If we multiply both top and bottom by /2 + /4 — 22 we are there after putting the

numerator under a single square root and multiplying out factors. Simples.

(c) Here’s the results:

method 1 method 2

nl| ontly Tn oty

110.7649 | 3.059 | 0.7652 | 3.061
2103899 | 3.119 | 0.3900 | 3.120
310.1949 | 3.118 | 0.1960 | 3.136
41 0.1000 | 3.200 | 0.09815 | 3.141

Table 1: These numbers were produced by my daughter, Hazel, on her calculator ! She retained 4

significant figures after each step on her calculator.

(d) In both schemes x,, ~ 7/2"" — 0. In the second scheme we are dividing a small number
by approximately 2 at each step and this is robust. In the first scheme, the final step of
the calculation is roughly \/(x,/2)? which is prone to loss of accuracy due to round off
eITors.

©University of Bristol 2025

This material is copyright of the University of Bristol unless explicitly stated. It is provided exclusively for educational purposes at the
University of Bristol and is to be downloaded or copied for your private study only.



