Numerical Analysis Solutions for sheet 4

Aitken’s A? Method, Newton-Raphson in higher dimensions, Lagrange interpolating

polynomials

1. The fixed point iteration is x, 1 = %w/ 10 — 23 . Aitken’s A? method uses the sequence of

the x,, to define a new sequence in the form

5 = (Azn)2 . _ (xn-i-l - xn)2

n — 4n T Ao T 4n .
A2xn (:L‘n+2 - 2:L’n-l—l + :L‘n)

The following table shows the numerical results for the two sequences. The starting point

is o = 1.5. One can see that the sequence obtained from Aitken’s method converges much

n Tp Ty

0 || 1.5000000 1.361886
1] 1.2869538 1.364329
2 || 1.4025408 1.364999
3 || 1.3454584 1.365169
4 1| 1.3751703 1.365214
5 || 1.3600942

6 || 1.3678470

quicker to the exact solution z* = 1.3652300.

2. Newton’s method for a system f(x) = 0 consists of the iteration

)

where J(x) is the Jacobian matrix. Its matrix elements are J;; = 0f;/0x;. Let A be
a non singular n x n matrix. The linear system Ax = b can be written in the form

f(x) = Ax — b = 0. Alternatively, we can write it in component form as
fi(x17"'7xn):ZA’ijxj_bi:O7 izl,...,n,
j=1

where A;; are the matrix elements of A, and z; and b; are the components of x and b,

respectively. The Jacobian matrix J for this system has matrix elements

Ofi

One sees that the Jacobian matrix J is identical to the matrix A, and it does not dependent
on x. Let us denote the initial point for Newton’s method by x(%). One step of Newton’s

method results in
xW = xO — 771 (xO) f(x0) = xO — A71(Ax@ —b) = A~ 'b.
This is the exact solution of the linear system Ax = b.
. The system of equations is
flz,y)=ax®* +by+c=0, g(x,y) =dr+e=0,
from which we obtain the solution as z* = —e/d and y* = —ae?/(bd?) — c/b.

The Jacobian matrix J for this system and its inverse J~! are given by

|\ fe fy| |20z b o1 0 —b
/= [gm gy] B [d O]’ / ~ (—bd) [—d 2ax]'

One step of Newton’s method with initial point (x¢,yo) results in

1| %o 1 0 —b
nl v (=bd) |—d 2az,

The second step in Newton’s iteration can be obtained from this result by replacing x; and

az? + by + ¢
dro + €

1 —be
bd |adz? — cd + 2aexq|

11 by 2o and yo, and also xy and yo by 1 and y;. We find

T2
Yo

where we inserted the value x; = —e/d from the previous equation. This agrees with the

Y

1 —be - —e/d
bd adz? — cd + 2aexy B —ae?/(bd?) — ¢/b

exact solution given before.

. Here we consider the system

flz,y)=2"—y* =0, g(x,y) =1+ay=0.
From the first equation we obtain y = +x and from the second equation y = —1/x. These
relations are only compatible if we chose the negative sign in the first relation: y = —x.

Then we obtain from the second relation x> = 1. We conclude that the solutions are

(x,y) = (1,—1) and (z,y) = (—1,1). The Jacobian matrix J for this system and its inverse

T 2y
—y 2x|

The initial point is (xg, o) = (o,), and one step of Newton’s method results in

T __a 1 | o 2« Cr—11
vl |a| 40?2 |—a 2a 20 |1

This shows that if one iteration point is on the line y = x then the following iteration point

J~1 are given by

£l [er —2 1
J— f fy _ z Y 7 Jl— g g
9 9y| |y = 2(z? + y?)

0
1+ a?

is also on the line y = x. Hence the iteration can never converge to one of the two solutions

because they are not on this line.

5. (a) The first relation you can plot as y = —e” and the second you can plot as y = In(x)
and where they intersect will represent a root of the two non-linear equations. Then
you see that In(z) is less than zero for 0 < # < 1 and in this range —e < y < —1 so

this defines a bounding box in which the root will lie.

(b) The Newton scheme is defined in the notes and we need the Jacobian first

J:<e‘” 1)
—1 eV

and then its inverse

So the Newton iteration step is

1 en —1 e’ +yp
Xptl = Xp — ——————
i 1+ e®ntyn 1 e evr — 1,

where x,, = (z,,,yn)". Or
Tnjr = T — (€T 4 ypetn — e 4 3,) /(1 4 ™)

and
Yn+1 = Yn — (e”” —+ Un + e$n+yn _ xnewn>/<1 i eanryn)

(¢) With (zg,v0) = (1, —1) we have, upon substituting in
T =e 1, y1 = —1
Next we have
zg=e ' — (e7TVe — o) /(1 4 e71/) = 0.2610638 . .. = 0.26106
to five digit precision. Also
Yo = —1.29035... = —1.2904
rounded to five digits.

6. There are three parts of the question.

(a) We use the formula in the notes for the Lagrange polynomial with =y = 0, z; = 1,
e =2 and f(x) = e":
(x —1)(x —2) r(x—2) ; xz(x—1),

Pg(l‘) = 9 60 + _—16 + Te

and find we can simply to

Py) = 1+ %ﬁ(l e %x(e _3)(e—1)

(b) We use the formula for the error in the notes

n

H(x — ;)

=0

E = max |f(z) — P»(x)] < max /7)) max

0<z<2 — 0<z<2 3! 0<z<2

We can find the max of f”(z) = e® which is e*. Next we let

W(z) = H(x —a) =a(x—1)(z —2) =2° — 32° + 22

1=0

and to find maximum values we differentiate to give
W'(x) = 32% — 6z + 2
Setting this to zero gives a quadratic with roots

64 /36 — 24
= —1+v33=1+1/V3

T

These two maxima are both in the interval 0 < x < 2 so we need to calculate W (x)
at both values (or do we 7). Then

and
2v/3
9
(why ? because the cubic is odd about # = 1). So the maximum W is 2v/3 and the
bound on the error is
< 62\/5

- 27

The actual maximum error require a calculation of

W(l—1/V3) =

E

B = max |f(z) - Py(x)]

0<zx<L2

and
flz)— Py(z)=e"—1— %x2(1 —e)? + %x(e —3)(e—1)

setting its derivative to zero gives
T 2 1
e’ —x(1—e) +§(e—3)(e—1) =0

and we are given the two roots, both in the interval 0 < x < 2. When we take
x = 0.448304 we find the modulus of f — P is 0.16046 . .. and for x = 1.60644 we find
f— Py =—0.21346. .. and so the maximum error is the 0.21346. The bound on the

error in (ii) evaluates to 0.47401 and so we are inside that bound.

7. (a) Just have to use the formula in the notes, and zo =0, 1 = 1, o = 2 with f(z¢) = 1,
f(z1) =2, f(z2) = 4. We get

(z —1)(z—2)

Polw) = L+ 2+ 4
=Ty o= 0
Simplifying gives
1 2
Py(z) :5@‘1)@_2)—29€($—2)+290(x—1) :?4_54_1,
(b) The error is defined (see notes) by
1

/(@) = Ba(2)| = Sl (©)llz(x — 1)z —2)]

for some ¢ € (0,2). First, from f(z) = 2%, we have f'(z) = In(2)2*, and so
f"(€) = (In(2))32%. The maximum value of |f”(£)] for £ € (0,2) is therefore 4(In(2))3.

Also, we need to find a bound on the second term |z(x — 1)(x — 2)| and this requires

d
o (x(x—1)(x—2)) =0
which gives

32° — 6z +2 = 0.
Solving gives 3(z —1)> =1 =0 and so 2 = 1 £ 1/4/3 at which

1 1 /1 2
w(z —1)(z — 2 :i<1il \/§>—<—1i1 \/§> -t (-_1> — 5
(=1 —2) IV3) = (-1£1V8) =2 (3 »
We conclude, therefore, that |z(x — 1)(x — 2)| < 2/3+/3. Putting everything together,
we have that

1 s 2
|f(x) = Py(2)] < 5% 4(In(2))? x 35~ 0.085.

8. Note that L and U are defined differently to in the LU-decomposition (see question).

(a) Since A =L+ U and (L + U)x* = b it follows from the iterative scheme that
Lx*) (L4 U)x*=b-Ux® —b

and
L(x®D) —x*) = —U(x® — x*).

(b) This is harder. We approach this by induction. First, we have from the top line of

the equation in (a)
n

(k+1) _ § : (k)
a11€eq = aljej
=2

and so
n

S ool

Jj=2

|a119§k+1)| =

and then we have

n
k+1 k
jan[lef V] < Jayyllel”)]
j=2

but, according to the definition,]eﬁ-k)| < ||| so it follows that

n
Jan[lef] < 1le® o Y Jay] < [le®] lars]
j=2

using diagonal dominance. And so |e§k+1)| < ||e®]|o. Now assume |e§-k+1)| < le®||w
for j =1,...,i— 1, say, for some ¢ > 2. Then the ith row in result in (a) reads

i—1 n

Zaijegkﬂ) + aiiegkﬂ) = — Z aijegk)

j=1 j=it1

which we rearrange to

i—1 n
(k+1) (k+1) (k)
a;;€; = — aijej - aijej .
=1 j=it1

Then it follows as above that

1—1 n
k+1 k+1 k
Jaiil e <3 a1+ > Jayllel)].
j=1 j=i+1

Using the assumption, we have

aullef™ ™ < fle®loo D la|
j=1
#i
and it follows after using diagonal dominance that

el] < [le®)]

oo

By induction, we have shown that it is true for ¢ = 1 and true for ¢ assuming true for
all j = 1,...,i—1 and therefore true for all 1 < i < n. Therefore ||e* V|| < [|®||s.

Remark: Direct methods for solving linear systems such as LU-decomposition find the
answer in a finite number of steps, and typically require O(n?) floating point operations.
Iterative methods such as Gauss-Seidel only approximate solutions which, under diagonally
dominant conditions, will convergence but require a stopping condition. However, each
iteration only requires O(n?) floating point operations and so, if the number of iterations
required is less than O(n), they can be quicker than direct methods. In particular, if the
matrix A is sparse (that is, they are mainly full of zeros) then the number of operations
required is reduced further (no need to multiply by zero in your algorithm !).
©University of Bristol 2025

This material is copyright of the University of Bristol unless explicitly stated. It is provided exclusively for educational purposes at the
University of Bristol and is to be downloaded or copied for your private study only.

