
Numerical Analysis Solutions for sheet 4

Aitken’s ∆2 Method, Newton-Raphson in higher dimensions, Lagrange interpolating

polynomials

1. The fixed point iteration is xn+1 =
1
2

√
10− x3

n . Aitken’s ∆
2 method uses the sequence of

the xn to define a new sequence in the form

x̂n = xn −
(∆xn)

2

∆2xn

= xn −
(xn+1 − xn)

2

(xn+2 − 2xn+1 + xn)
.

The following table shows the numerical results for the two sequences. The starting point

is x0 = 1.5. One can see that the sequence obtained from Aitken’s method converges much

n xn x̂n

0 1.5000000 1.361886

1 1.2869538 1.364329

2 1.4025408 1.364999

3 1.3454584 1.365169

4 1.3751703 1.365214

5 1.3600942

6 1.3678470

quicker to the exact solution x∗ = 1.3652300.

2. Newton’s method for a system f(x) = 0 consists of the iteration

x(m+1) = x(m) − J−1(x(m))f(x(m)),

where J(x) is the Jacobian matrix. Its matrix elements are Jij = ∂fi/∂xj. Let A be

a non singular n × n matrix. The linear system Ax = b can be written in the form

f(x) = Ax− b = 0. Alternatively, we can write it in component form as

fi(x1, . . . , xn) =
n∑

j=1

Aijxj − bi = 0 , i = 1, . . . , n ,

where Aij are the matrix elements of A, and xi and bi are the components of x and b,

respectively. The Jacobian matrix J for this system has matrix elements

Jij(x) =
∂fi(x)

∂xj

= Aij .



One sees that the Jacobian matrix J is identical to the matrix A, and it does not dependent

on x. Let us denote the initial point for Newton’s method by x(0). One step of Newton’s

method results in

x(1) = x(0) − J−1(x(0)) f(x(0)) = x(0) − A−1(Ax(0) − b) = A−1b .

This is the exact solution of the linear system Ax = b.

3. The system of equations is

f(x, y) = ax2 + by + c = 0 , g(x, y) = dx+ e = 0 ,

from which we obtain the solution as x∗ = −e/d and y∗ = −ae2/(bd2)− c/b.

The Jacobian matrix J for this system and its inverse J−1 are given by

J =

[
fx fy

gx gy

]
=

[
2ax b

d 0

]
, J−1 =

1

(−bd)

[
0 −b

−d 2ax

]
.

One step of Newton’s method with initial point (x0, y0) results in[
x1

y1

]
=

[
x0

y0

]
− 1

(−bd)

[
0 −b

−d 2ax0

] [
ax2

0 + by0 + c

dx0 + e

]
=

1

bd

[
−be

adx2
0 − cd+ 2aex0

]
.

The second step in Newton’s iteration can be obtained from this result by replacing x1 and

y1 by x2 and y2, and also x0 and y0 by x1 and y1. We find[
x2

y2

]
=

1

bd

[
−be

adx2
1 − cd+ 2aex1

]
=

[
−e/d

−ae2/(bd2)− c/b

]
,

where we inserted the value x1 = −e/d from the previous equation. This agrees with the

exact solution given before.

4. Here we consider the system

f(x, y) = x2 − y2 = 0 , g(x, y) = 1 + xy = 0 .

From the first equation we obtain y = ±x and from the second equation y = −1/x. These

relations are only compatible if we chose the negative sign in the first relation: y = −x.

Then we obtain from the second relation x2 = 1. We conclude that the solutions are

(x, y) = (1,−1) and (x, y) = (−1, 1). The Jacobian matrix J for this system and its inverse

J−1 are given by

J =

[
fx fy

gx gy

]
=

[
2x −2y

y x

]
, J−1 =

1

2(x2 + y2)

[
x 2y

−y 2x

]
.

The initial point is (x0, y0) = (α, α), and one step of Newton’s method results in[
x1

y1

]
=

[
α

α

]
− 1

4α2

[
α 2α

−α 2α

] [
0

1 + α2

]
=

α2 − 1

2α

[
1

1

]
.

This shows that if one iteration point is on the line y = x then the following iteration point

is also on the line y = x. Hence the iteration can never converge to one of the two solutions

because they are not on this line.



5. (a) The first relation you can plot as y = −ex and the second you can plot as y = ln(x)

and where they intersect will represent a root of the two non-linear equations. Then

you see that ln(x) is less than zero for 0 < x < 1 and in this range −e < y < −1 so

this defines a bounding box in which the root will lie.

(b) The Newton scheme is defined in the notes and we need the Jacobian first

J =

(
ex 1

−1 ey

)

and then its inverse

J−1 =
1

1 + ex+y

(
ey −1

1 ex

)
So the Newton iteration step is

xn+1 = xn −
1

1 + exn+yn

(
eyn −1

1 exn

)(
exn + yn

eyn − xn

)

where xn = (xn, yn)
T . Or

xn+1 = xn − (eyn+xn + yne
yn − eyn + xn)/(1 + exn+yn)

and

yn+1 = yn − (exn + yn + exn+yn − xne
xn)/(1 + exn+yn)

(c) With (x0, y0) = (1,−1) we have, upon substituting in

x1 = e−1, y1 = −1

Next we have

x2 = e−1 − (e−1+1/e − e−1)/(1 + e−1+1/e) = 0.2610638 . . . = 0.26106

to five digit precision. Also

y2 = −1.29035 . . . = −1.2904

rounded to five digits.

6. There are three parts of the question.

(a) We use the formula in the notes for the Lagrange polynomial with x0 = 0, x1 = 1,

x2 = 2 and f(x) = ex:

P2(x) =
(x− 1)(x− 2)

2
e0 +

x(x− 2)

−1
e1 +

x(x− 1)

2
e2

and find we can simply to

P2(x) = 1 +
1

2
x2(1− e)2 − 1

2
x(e− 3)(e− 1)



(b) We use the formula for the error in the notes

E = max
0≤x≤2

|f(x)− P2(x)| ≤ max
0≤x≤2

|f ′′′(x)|
3!

max
0≤x≤2

∣∣∣∣∣
n∏

i=0

(x− xi)

∣∣∣∣∣
We can find the max of f ′′′(x) = ex which is e2. Next we let

W (x) =
n∏

i=0

(x− xi) = x(x− 1)(x− 2) = x3 − 3x2 + 2x

and to find maximum values we differentiate to give

W ′(x) = 3x2 − 6x+ 2

Setting this to zero gives a quadratic with roots

x =
6±

√
36− 24

6
= 1±

√
33 = 1± 1/

√
3

These two maxima are both in the interval 0 ≤ x ≤ 2 so we need to calculate W (x)

at both values (or do we ?). Then

W (1 + 1/
√
3) =

(
1 +

1√
3

)
1√
3

(
1− 1√

3

)
= −2

√
3

9

and

W (1− 1/
√
3) =

2
√
3

9

(why ? because the cubic is odd about x = 1). So the maximum W is 2
√
3 and the

bound on the error is

E ≤ e2
√
3

27

(c) The actual maximum error require a calculation of

E = max
0≤x≤2

|f(x)− P2(x)|

and

f(x)− P2(x) = ex − 1− 1

2
x2(1− e)2 +

1

2
x(e− 3)(e− 1)

setting its derivative to zero gives

ex − x(1− e)2 +
1

2
(e− 3)(e− 1) = 0

and we are given the two roots, both in the interval 0 ≤ x ≤ 2. When we take

x = 0.448304 we find the modulus of f −P2 is 0.16046 . . . and for x = 1.60644 we find

f − P2 = −0.21346 . . . and so the maximum error is the 0.21346. The bound on the

error in (ii) evaluates to 0.47401 and so we are inside that bound.



7. (a) Just have to use the formula in the notes, and x0 = 0, x1 = 1, x2 = 2 with f(x0) = 1,

f(x1) = 2, f(x2) = 4. We get

P2(x) =
(x− 1)(x− 2)

(−1)(−2)
1 +

(x− 0)(x− 2)

(1)(−1)
2 +

(x− 0)(x− 1)

(2)(1)
4.

Simplifying gives

P2(x) =
1

2
(x− 1)(x− 2)− 2x(x− 2) + 2x(x− 1) =

x2

2
+

x

2
+ 1.

(b) The error is defined (see notes) by

|f(x)− P2(x)| =
1

6
|f ′′′(ξ)||x(x− 1)(x− 2)|

for some ξ ∈ (0, 2). First, from f(x) = 2x, we have f ′(x) = ln(2)2x, and so

f ′′′(ξ) = (ln(2))32ξ. The maximum value of |f ′′′(ξ)| for ξ ∈ (0, 2) is therefore 4(ln(2))3.

Also, we need to find a bound on the second term |x(x− 1)(x− 2)| and this requires

d

dx
(x(x− 1)(x− 2)) = 0

which gives

3x2 − 6x+ 2 = 0.

Solving gives 3(x− 1)2 − 1 = 0 and so x = 1± 1/
√
3 at which

x(x− 1)(x− 2) = ±
(
1± 1/

√
3
) 1√

3

(
−1± 1/

√
3
)
= ± 1√

3

(
1

3
− 1

)
= ∓ 2

3
√
3
.

We conclude, therefore, that |x(x− 1)(x− 2)| < 2/3
√
3. Putting everything together,

we have that

|f(x)− P2(x)| ≤
1

6
× 4(ln(2))3 × 2

3
√
3
≈ 0.085.

8. Note that L and U are defined differently to in the LU-decomposition (see question).

(a) Since A = L+ U and (L+ U)x∗ = b it follows from the iterative scheme that

Lx(k+1) − (L+ U)x∗ = b− Ux(k) − b

and

L(x(k+1) − x∗) = −U(x(k) − x∗).

(b) This is harder. We approach this by induction. First, we have from the top line of

the equation in (a)

a11e
(k+1)
1 = −

n∑
j=2

a1je
(k)
j

and so

|a11e(k+1)
1 | =

∣∣∣∣∣
n∑

j=2

a1je
(k)
j

∣∣∣∣∣



and then we have

|a11||e(k+1)
1 | ≤

n∑
j=2

|a1j||e(k)j |

but, according to the definition, |e(k)j | ≤ ∥e(k)∥∞ so it follows that

|a11||e(k+1)
1 | ≤ ∥e(k)∥∞

n∑
j=2

|a1j| < ∥e(k)∥∞|a11|

using diagonal dominance. And so |e(k+1)
1 | < ∥e(k)∥∞. Now assume |e(k+1)

j | < ∥e(k)∥∞
for j = 1, . . . , i− 1, say, for some i ≥ 2. Then the ith row in result in (a) reads

i−1∑
j=1

aije
(k+1)
j + aiie

(k+1)
i = −

n∑
j=i+1

aije
(k)
j

which we rearrange to

aiie
(k+1)
i = −

i−1∑
j=1

aije
(k+1)
j −

n∑
j=i+1

aije
(k)
j .

Then it follows as above that

|aii||e(k+1)
i | ≤

i−1∑
j=1

|aij||e(k+1)
j |+

n∑
j=i+1

|aij||e(k)j |.

Using the assumption, we have

|aii||e(k+1)
i | < ∥e(k)∥∞

n∑
j=1

̸=i

|aij|

and it follows after using diagonal dominance that

|e(k+1)
i | < ∥e(k)∥∞.

By induction, we have shown that it is true for i = 1 and true for i assuming true for

all j = 1, . . . , i−1 and therefore true for all 1 ≤ i ≤ n. Therefore ∥e(k+1)∥∞ < ∥e(k)∥∞.

Remark: Direct methods for solving linear systems such as LU-decomposition find the

answer in a finite number of steps, and typically require O(n3) floating point operations.

Iterative methods such as Gauss-Seidel only approximate solutions which, under diagonally

dominant conditions, will convergence but require a stopping condition. However, each

iteration only requires O(n2) floating point operations and so, if the number of iterations

required is less than O(n), they can be quicker than direct methods. In particular, if the

matrix A is sparse (that is, they are mainly full of zeros) then the number of operations

required is reduced further (no need to multiply by zero in your algorithm !).
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