Numerical Analysis Solutions for sheet 5

Lagrange Polynomials, Differentiation and Richardson Extrapolation

1.

(a)

By definition p;;(x) = f(x;) is a polynomial of degree zero (a constant) which takes
the value f(z;) when z = x;. So that satisfies the requirements.

To show the second bit we use induction. It’s a bit fiddly. So assume the result is
true for j: that is p; j(z) is a polynomial of degree at most j — i and p; j(x)) = f(z)
forall 0 <: <k <7 <n. Then

( — zj4)pij(z) — (2 — 2)piy1 11 (T)

Ty — Tjt1

Pijr1(r) =

is obviously a polynomial of degree at most j + 1 — i (one degree higher because of
multiplying by z). Also
(zx — xj+1)pi,j(37k) — (@, — l‘i)piﬂ,jﬂ(xk)

pij+1(xx) = i — T1 :
i

We can use assumptions p; ;(zx) = f(xg) for 0 <i < k < j and p;y1 j+1(zx) = f(xx)
fori+1<k<j+1<ntoseethatfori+1<k<jy

(zr — 2j1) f(2n) — (vp — 25) f ()

Ti — Tjt1

= f(zr).

Pijr1(Tk) =

Also, when 0 <i=k < j+1,

(25 = 2j41)pij(2:) — (5 — T)Pig1j+1(24) = f(z;)

pi’jﬂ(xi) - Ty — Tit1
i J

(because the z; — z; = 0 which kills off the term p; 41 j11(x;) whose value cannot be

assumed) and when i < k = j + 1 we have

($j+1 . xj+1)pz‘,j($j+1) — (xj+1 — xi)pz‘+1,j+1($j+1) _ f(xjrl)
= J

Pij1(Tj) = Ti— Tig
( J

for a similar reasoning. So the result is also true for 7 + 1 and since it is true when

j =1, then it is true for all + < 7 < n.

The algorithm goes like this. First step: define p;;(z) = f(z;) for all 0 < i < n. Next
step: define p; ;41(x) using j = i+ 1 in the given formula for 0 <4 < n — 1 which only
require the values of p; ;(z) which are known. Then we set j =i +2for 0 <i<n-—2
to define p; ;12(z) and so on until the last step when we set j =i+ n for i = 0 only
to define pg,(z) which is a polynomial of degree at most n which equals f(zy) for

0<k<n.

Hence py,(z) = P, (), since this is the unique Lagrange interpolating polynomial.



(c) Let’s try and estimate the number of flops (floating point operations) needed for
the algorithm above. These are any of the operations +, —, *, / needed to make the
computation of P,(z) for a given value of x. The first step counts nothing. There are
n iterations thereafter. The ith step involves definining n — ¢ new functions p; ;(z)
which involves some -+, —, %, / operations (let’s not bother counting them). So the
whole process of determining pg () is roughly O((n — 1)+ (n —2) + ... +2+ 1) =
O((n — 1)(n — 2)/2) operations.

Now the Lagrange polynomial interpolation formula. This is the sum over n+ 1 values

of j of the product over n factors. So this is approximately O(n(n + 1)) operations.

So both are O(n?) operations, but the prefactor of 1/2 in the method in (b) means
it is roughly double the speed (all other things being equal — one really does need to

count all of the operations needed at each step to be precise).

Note: The method in this question is called Neville’s algorithm!.

2. To confirm, substitute in. So ¥/(x) = 2ax + b and the RHS is

a(x+h)?+bx+h)+c—alx—h)>—blx—h)—c
2h

And again, y"(z) = 2a and the RHS is

= 2ax + b.

a(z+ h)?>+0b(x+h) +c—2ax® — 2bx — 2c+alx — h)?> +b(x — h) + ¢

— 2.
oh “

Why ? Well the central difference scheme for the derivative and the formula for the second

derivative both have errors proportional to y”'(§) and here y”(x) = 0.

3. (a) Using Taylor’s theorem we find

h2
fxo +h) = f(wo) + h f'(20) + ?fﬂ(f) ;
where & € (g, xg + h). We solve this equation for f'(xy) and obtain

lag) = TR 2T ey,

This shows that the truncation error is —hf”(£)/2. The approximation is of order h and is
a first order scheme. Since f(z) = e” the maximum value of | f”(£)| exp!™™ and so a bound

on the error introduced when calculating f/(1) is (h/2) exp™".

(b) We apply the approximation to evaluate the derivative of f(z) = e* at x = 1. The
following table shows the results of a numerical evaluation of f/'(1) ~ [f(1+ h) — f(1)]/h
with four decimal places accuracy for various values of h. The best result is obtained for
h =102

Lafter E.H. Neville, an English mathematician who convinced the more famous mathematician Ramanujan to

come to England from India



4.

h f'(1) | error £

107° | 4.6708 | 1.9525
1071 | 2.8590 | 0.1407
1072 | 2.7300 | 0.0117
1073 | 2.7000 | -0.0183
10~* | 3.0000 | 0.2817
107° | 0.0000 | -2.7183

(c) We can estimate the optimal value, hg,y, of h theoretically. Denote the round-
off errors for f(1 + h) and f(1) are denoted by e(1 + h) and e(1). Then, for four
digit precision, machine accuracy is € = 10™* and the round-off errors are bounded by
el f(1+h)| =107 f(1+ h)| S 107%e! for h small and €|f(1)| = 1074 f(1)| = 10~ %!

From part (a) the truncation error is bounded by (h/2)e!*" ~ (h/2)e.

This yields the following bound for the total error E;

e(l+h)—e(l) h

B = | = 2| <

2¢e  eh

ﬂ@g7+7

e(l—I—h)’
h

This bound is minimal (setting d|E;|/dh = 0) when h = hy,y = 2y/e ~ 0.02, in good
agreement with the numerically obtained optimal value of h ~ 1072.

(a) There is just one backward difference approximation of f’(1) ~ 0.2 and a forward
difference of f’(1) ~ 0.8.

(b) It’s clear the hint is useful as we have evaluations of f at g = 1 and x¢ — h, xo + 2h

where h = 0.1. We approximate f'(z) by

af(xg—h)+ Bf(xo) +vf(xo+2h) = off(xo) — hf' (o) + %th”(xO) - %hgfm(ﬁl))
+B8f(x0)
+y(f(wo) + 2hf'(x0) + 5(2h)* f" (o) + §(20)° " (&2))

where & € (29 — h,zo) and & € (g, xo + 2h). Equating terms proportional to f(xz¢)
and setting the resulting coefficient to zero gives

a+pB+v=0.

Equating terms proportional to f’(xo) and setting the resulting coefficient to 1 gives
2y —a=1/h

and for f”(xg) we want the resulting coefficient to be zero so

4y +a = 0.



We solve these to get a« = —2/3h, v = 1/6h and § = 1/2h and so this tells us that

—4f(xo — h) +3f(x0) + f(zo + 2h)
6h

f'(@o) = + E(h)

where
h3 h?
E(h) = g(af”’(&) —8vf"(&2)) = —g(f”’(é’l) +2f"(&2))

is O(h?). If we use the numbers supplied we get
—-3.924+3+1.16
! 1 ~ —

With f(z) =1+ 20(z — 1)® we have f’(1) = 0 and therefore the 1st order backward
difference approximation of 0.2 is better than the 2nd order scheme giving 0.4. Why

0.4.

is this 7 Well, the truncation error in the backward difference scheme is, according to

the notes,
1
§hf”(€), for £ € (0.9,1).
Here, h = 0.1, f"(x) = 120(x — 1) and so —f"(§) takes a minimum value of 0 and

maximum value of 12. Therefore the truncation error lies somewhere between 0 and
12 x 0.1 x % = —0.6.

For the second order scheme, the truncation error is, according to part (b),

B(R) = 50 (&) + 20"(&)

and h% = 0.01 but f”(x) = 120. So we have
1
B(h) = =5 x 0.01 x 120 x 3 = —0.4

precisely. The error is large here because f”(r) is large even though h? is small.
However, f”(x) may not be as large which is why the first order scheme happens to

outperform the second order scheme.

If a quadratic function is fitted to the data then the approximatin in (b) is exact since
the error is proportional to third derivatives and these are zero for quadratics. There
would still be an error in 1st order schemes since the error is proportional to f”(x)

which is not, in general, zero.

The forward difference and central difference approximations for the derivative f’(1.2)
for h=0.1 and h = 0.2 are
F(1.3) = f(1.2)  3.535581 — 3.094479

'(1.2) ~ = 4.41102
J12) 0.1 0.1 0200
1.4) — f(1.2)  3.996196 — 3.0944
F(1.2) ~ f4) = f(1.2) _ 3.996196 — 3.094479 _ | ey
0.2 0.2
1.3) — f(1.1) 3. 1-2.
F(1.2) ~ I 3)0 2f( ) _ 3.53558 3 677335 _ 4 9912300 = £/

F(14) = f(1.0)  3.996196 — 2.287355

o o /
» o = 4.2721025 = f},

f(1.2) =~



(b) Using Taylor’s theorem we find that
af(xo) +bf(xo + h) + cf(xo + 2h)

= af o) +b | Flan) + 1 an) + ) + (60

3
+c [f(xo) + 20 f (o) + 20% " (o) + %f”&)]
2 3
= (@ b+ ) (o) + h(b +20)(z0) & b+ 1) (z0) + (b (E1) + 8/ (E).
where & € (29,0 + h) and & € (xg, o + 2h). To obtain an approximation for f’(z)

we require
a+b+c=0, h(b+2c)=1,b+4c=0 = c=—1/2h, b=2/h, a = —3/2h.

This results in the following approximation

—3f(wo) +4f(xo +h) — f(zo + 2h)

2
o +O(h?).

f(wo) =

A numerical evaluation with xqg = 1.2 and h = 0.1 results in

—3 % 3.094479 + 4 x 3.535581 — 3.996196
F12)~ 2~ i ;2 — 4.313455.

(¢) We know from the lecture that the error of the central difference approximation is of
order h?. If we denote the third approximation in the solutions of part (a) by f; we
have (with h = 0.1)

J'(wo) = fi, + AR* + O(W), (1)

where A is some constant. (In fact we could write O(h?) instead of O(h?) because we
showed in the lecture that the expansion of the error term involves only even powers
of h.) If we denote the fourth approximation in the solutions of part (a) by f;, we
have (with h = 0.1)

f'(x0) = foy, +4AR* + O(°) . (2)

We can get rid of the h%-term by forming the combination [4 x (1) — (2)]/3

A f,

Tt O(h?).

f' (o)

A numerical evaluation yields

4 x 4.2012300 — 4.2721025
Fw) ~ =2 . = 4.297606 .

This is a much better approximation than all previous ones. The actual value is

£/(1.2) = 4.297549.

6. The magnitude of the total error at x =1 is

(f0+h)-2f)+fA-h) 1,,
h? 12

|Ey| =~ f(iv)(f)



where £ € (1 — h,1+ h) and € is machine accuracy. Thus

4ee? i
B s 2 4 Lae o)

since f(1+h) ~ f(1) = e !. We need 4e™*"(3 — 1222 + 4z*) which gives |f()(1)| = 20e™"

so that I
ee 2 —1
PR

B S

Minimising as a function of h gives

hopt = (12¢/5)14 = 0.012

. We need to consider the full Taylor series expansion of the approximation to f”(xg), thus

f(zo+h) —2f(z0) + f(wo — h)

5 = (UM)[(f +hf' + (B )2)f" + . 4 (R B + )

—2f
+(f = hf + (A2 f" — .+ (=DFRE RN R )]

(omitting the argument xy from the function f for brevity). And when we tidy everything

up we see that the odd powers of h cancel and we get

f”(-?fo) _ f(l’o + h) — 2f}(l2$0) + f Ty — _9 i 2k " 2 2k+2)($0)

k=1

Thus, we may write N = f”, Nj(h) is the approximation to N and the equation above
takes the form
N = Nl(h) + CLth + a4h2 +

Let h — h/2 to get a new approximation
N = Nl(h/Q) +a2h2/4—|—a4h2/16+...

It follows that
N = Nyo(h) + O(h*)

when

o) = 002 = i)

In terms of the original evaluations of f, Ny(h) i

4 flzo+h/2) = 2f(w0) + fxo — h/2) 1 [f(zo+h)—2f(x0) + f(xo — h)
3 (h/2)? 3 h?

which simplifies to the expression in the question and is evidently O(h?*) accurate.



8. We apply Taylor’s theorem to the following linear combination

af(xo) + Bf (xo + h) + v f(zg — Ah)

h? h .
= af(x) + B {f’(mo) + hf (o) + Ef’”(xo) + Ef(w)(&)}

A2h? A3h3 Atht
f,/($0) _ Tf///(xo) _'_ 24

7 | flaw) = A )+ Fe)

= (a+ ) f(wo) + (B = Ay f'(z0) + 2(25 + Nhy) f" (o) + %2(35 — Xhy) " (20)

3
+ 2 F6) 4 N O 6),

where & is between xy and zy + h, and & is between xg and g — Ah. To obtain an

approximation for f”(xy) we require

h
a+v=0, B — Ahy =0, 5(25+)\2h’y):1.

This leads to the following values

2 g2 2
T2 1) ThEztN YT

The resulting approximation is

_ —2f(z0) + 2L (w0 + h) + 2f (wo — Ah) | (3= A?)h

f" (o) NR2(2 + \) 32+ )

f"(x0) + O(h?).

We see that the error is in general O(h). However, if A* = 3 then the term proportional to

h vanishes and we obtain an error of order O(h?).
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