
Numerical Analysis Solutions for sheet 5

Lagrange Polynomials, Differentiation and Richardson Extrapolation

1. (a) By definition pi,i(x) = f(xi) is a polynomial of degree zero (a constant) which takes

the value f(xi) when x = xi. So that satisfies the requirements.

To show the second bit we use induction. It’s a bit fiddly. So assume the result is

true for j: that is pi,j(x) is a polynomial of degree at most j − i and pi,j(xk) = f(xk)

for all 0 ≤ i ≤ k ≤ j ≤ n. Then

pi,j+1(x) =
(x− xj+1)pi,j(x)− (x− xi)pi+1,j+1(x)

xi − xj+1

is obviously a polynomial of degree at most j + 1 − i (one degree higher because of

multiplying by x). Also

pi,j+1(xk) =
(xk − xj+1)pi,j(xk)− (xk − xi)pi+1,j+1(xk)

xi − xj+1

.

We can use assumptions pi,j(xk) = f(xk) for 0 ≤ i ≤ k ≤ j and pi+1,j+1(xk) = f(xk)

for i+ 1 ≤ k ≤ j + 1 ≤ n to see that for i+ 1 ≤ k ≤ j

pi,j+1(xk) =
(xk − xj+1)f(xk)− (xk − xi)f(xk)

xi − xj+1

= f(xk).

Also, when 0 ≤ i = k ≤ j + 1,

pi,j+1(xi) =
(xi − xj+1)pi,j(xi)− (xi − xi)pi+1,j+1(xi)

xi − xj+1

= f(xi)

(because the xi − xi = 0 which kills off the term pi+1,j+1(xi) whose value cannot be

assumed) and when i ≤ k = j + 1 we have

pi,j+1(xj+1) =
(xj+1 − xj+1)pi,j(xj+1)− (xj+1 − xi)pi+1,j+1(xj+1)

xi − xj+1

= f(xj+1)

for a similar reasoning. So the result is also true for j + 1 and since it is true when

j = i, then it is true for all i ≤ j ≤ n.

(b) The algorithm goes like this. First step: define pi,i(x) = f(xi) for all 0 ≤ i ≤ n. Next

step: define pi,i+1(x) using j = i+1 in the given formula for 0 ≤ i ≤ n− 1 which only

require the values of pi,i(x) which are known. Then we set j = i+2 for 0 ≤ i ≤ n− 2

to define pi,i+2(x) and so on until the last step when we set j = i + n for i = 0 only

to define p0,n(x) which is a polynomial of degree at most n which equals f(xk) for

0 ≤ k ≤ n.

Hence p0,n(x) = Pn(x), since this is the unique Lagrange interpolating polynomial.



(c) Let’s try and estimate the number of flops (floating point operations) needed for

the algorithm above. These are any of the operations +,−, ∗, / needed to make the

computation of Pn(x) for a given value of x. The first step counts nothing. There are

n iterations thereafter. The ith step involves definining n − i new functions pi,j(x)

which involves some +,−, ∗, / operations (let’s not bother counting them). So the

whole process of determining p0,n(x) is roughly O((n − 1) + (n − 2) + ... + 2 + 1) =

O((n− 1)(n− 2)/2) operations.

Now the Lagrange polynomial interpolation formula. This is the sum over n+1 values

of j of the product over n factors. So this is approximately O(n(n+ 1)) operations.

So both are O(n2) operations, but the prefactor of 1/2 in the method in (b) means

it is roughly double the speed (all other things being equal – one really does need to

count all of the operations needed at each step to be precise).

Note: The method in this question is called Neville’s algorithm1.

2. To confirm, substitute in. So y′(x) = 2ax+ b and the RHS is

a(x+ h)2 + b(x+ h) + c− a(x− h)2 − b(x− h)− c

2h
= 2ax+ b.

And again, y′′(x) = 2a and the RHS is

a(x+ h)2 + b(x+ h) + c− 2ax2 − 2bx− 2c+ a(x− h)2 + b(x− h) + c

2h
= 2a.

Why ? Well the central difference scheme for the derivative and the formula for the second

derivative both have errors proportional to y′′′(ξ) and here y′′′(x) ≡ 0.

3. (a) Using Taylor’s theorem we find

f(x0 + h) = f(x0) + h f ′(x0) +
h2

2
f ′′(ξ) ,

where ξ ∈ (x0, x0 + h). We solve this equation for f ′(x0) and obtain

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ) .

This shows that the truncation error is −hf ′′(ξ)/2. The approximation is of order h and is

a first order scheme. Since f(x) = ex the maximum value of |f ′′(ξ)| exp1+h and so a bound

on the error introduced when calculating f ′(1) is (h/2) exp1+h.

(b) We apply the approximation to evaluate the derivative of f(x) = ex at x = 1. The

following table shows the results of a numerical evaluation of f ′(1) ≈ [f(1 + h) − f(1)]/h

with four decimal places accuracy for various values of h. The best result is obtained for

h = 10−2.

1after E.H. Neville, an English mathematician who convinced the more famous mathematician Ramanujan to

come to England from India



h f ′(1) error E

10−0 4.6708 1.9525

10−1 2.8590 0.1407

10−2 2.7300 0.0117

10−3 2.7000 -0.0183

10−4 3.0000 0.2817

10−5 0.0000 -2.7183

(c) We can estimate the optimal value, hopt, of h theoretically. Denote the round-

off errors for f(1 + h) and f(1) are denoted by e(1 + h) and e(1). Then, for four

digit precision, machine accuracy is ϵ = 10−4 and the round-off errors are bounded by

ϵ|f(1 + h)| = 10−4|f(1 + h)| ≲ 10−4e1 for h small and ϵ|f(1)| = 10−4|f(1)| = 10−4e1

From part (a) the truncation error is bounded by (h/2)e1+h ≈ (h/2)e.

This yields the following bound for the total error Et

|Et| =
∣∣∣∣e(1 + h)− e(1)

h
− h

2
f ′′(ξ)

∣∣∣∣ ≤ ∣∣∣∣e(1 + h)

h

∣∣∣∣+ ∣∣∣∣e(1)h

∣∣∣∣+ ∣∣∣∣h2f ′′(ξ)

∣∣∣∣ ≤ 2ϵe

h
+

eh

2
.

This bound is minimal (setting d|Et|/dh = 0) when h = hopt = 2
√
ϵ ≈ 0.02, in good

agreement with the numerically obtained optimal value of h ≈ 10−2.

4. (a) There is just one backward difference approximation of f ′(1) ≈ 0.2 and a forward

difference of f ′(1) ≈ 0.8.

(b) It’s clear the hint is useful as we have evaluations of f at x0 = 1 and x0 − h, x0 + 2h

where h = 0.1. We approximate f ′(x) by

αf(x0 − h) + βf(x0) + γf(x0 + 2h) = α(f(x0)− hf ′(x0) +
1
2
h2f ′′(x0)− 1

6
h3f ′′′(ξ1))

+βf(x0)

+γ(f(x0) + 2hf ′(x0) +
1
2
(2h)2f ′′(x0) +

1
6
(2h)3f ′′′(ξ2))

where ξ1 ∈ (x0 − h, x0) and ξ2 ∈ (x0, x0 + 2h). Equating terms proportional to f(x0)

and setting the resulting coefficient to zero gives

α + β + γ = 0.

Equating terms proportional to f ′(x0) and setting the resulting coefficient to 1 gives

2γ − α = 1/h

and for f ′′(x0) we want the resulting coefficient to be zero so

4γ + α = 0.



We solve these to get α = −2/3h, γ = 1/6h and β = 1/2h and so this tells us that

f ′(x0) =
−4f(x0 − h) + 3f(x0) + f(x0 + 2h)

6h
+ E(h)

where

E(h) =
h3

6
(αf ′′′(ξ1)− 8γf ′′′(ξ2)) = −h2

9
(f ′′′(ξ1) + 2f ′′′(ξ2))

is O(h2). If we use the numbers supplied we get

f ′(1) ≈ −3.92 + 3 + 1.16

0.6
= 0.4.

(c) With f(x) = 1 + 20(x − 1)3 we have f ′(1) = 0 and therefore the 1st order backward

difference approximation of 0.2 is better than the 2nd order scheme giving 0.4. Why

is this ? Well, the truncation error in the backward difference scheme is, according to

the notes,
1

2
hf ′′(ξ), for ξ ∈ (0.9, 1).

Here, h = 0.1, f ′′(x) = 120(x − 1) and so −f ′′(ξ) takes a minimum value of 0 and

maximum value of 12. Therefore the truncation error lies somewhere between 0 and

12× 0.1× 1
2
= −0.6.

For the second order scheme, the truncation error is, according to part (b),

E(h) = −1

9
h2(f ′′′(ξ1) + 2f ′′′(ξ2))

and h2 = 0.01 but f ′′′(x) = 120. So we have

E(h) = −1

9
× 0.01× 120× 3 = −0.4

precisely. The error is large here because f ′′′(x) is large even though h2 is small.

However, f ′′(x) may not be as large which is why the first order scheme happens to

outperform the second order scheme.

(d) If a quadratic function is fitted to the data then the approximatin in (b) is exact since

the error is proportional to third derivatives and these are zero for quadratics. There

would still be an error in 1st order schemes since the error is proportional to f ′′(x)

which is not, in general, zero.

5. (a) The forward difference and central difference approximations for the derivative f ′(1.2)

for h = 0.1 and h = 0.2 are

f ′(1.2) ≈ f(1.3)− f(1.2)

0.1
=

3.535581− 3.094479

0.1
= 4.4110200

f ′(1.2) ≈ f(1.4)− f(1.2)

0.2
=

3.996196− 3.094479

0.2
= 4.5085850

f ′(1.2) ≈ f(1.3)− f(1.1)

0.2
=

3.535581− 2.677335

0.2
= 4.2912300 = f ′

h

f ′(1.2) ≈ f(1.4)− f(1.0)

0.4
=

3.996196− 2.287355

0.4
= 4.2721025 = f ′

2h



(b) Using Taylor’s theorem we find that

af(x0) + bf(x0 + h) + cf(x0 + 2h)

= af(x0) + b

[
f(x0) + hf ′(x0) +

h2

2
f ′′(x0) +

h3

6
f ′′′(ξ1)

]
+ c

[
f(x0) + 2hf ′(x0) + 2h2f ′′(x0) +

4h3

3
f ′′′(ξ2)

]
= (a+ b+ c)f(x0) + h(b+ 2c)f ′(x0) +

h2

2
(b+ 4c)f ′′(x0) +

h3

6
(bf ′′′(ξ1) + 8cf ′′′(ξ2)) ,

where ξ1 ∈ (x0, x0 + h) and ξ2 ∈ (x0, x0 + 2h). To obtain an approximation for f ′(x0)

we require

a+ b+ c = 0, h(b+ 2c) = 1, b+ 4c = 0 =⇒ c = −1/2h, b = 2/h, a = −3/2h.

This results in the following approximation

f ′(x0) =
−3f(x0) + 4f(x0 + h)− f(x0 + 2h)

2h
+O(h2).

A numerical evaluation with x0 = 1.2 and h = 0.1 results in

f ′(1.2) ≈ −3× 3.094479 + 4× 3.535581− 3.996196

0.2
= 4.313455.

(c) We know from the lecture that the error of the central difference approximation is of

order h2. If we denote the third approximation in the solutions of part (a) by f ′
h we

have (with h = 0.1)

f ′(x0) = f ′
h + Ah2 +O(h3) , (1)

where A is some constant. (In fact we could write O(h4) instead of O(h3) because we

showed in the lecture that the expansion of the error term involves only even powers

of h.) If we denote the fourth approximation in the solutions of part (a) by f ′
2h we

have (with h = 0.1)

f ′(x0) = f ′
2h + 4Ah2 +O(h3) . (2)

We can get rid of the h2-term by forming the combination [4× (1)− (2)]/3

f ′(x0) =
4f ′

h − f ′
2h

3
+O(h3) .

A numerical evaluation yields

f ′(x0) ≈
4× 4.2912300− 4.2721025

3
= 4.297606 .

This is a much better approximation than all previous ones. The actual value is

f ′(1.2) = 4.297549.

6. The magnitude of the total error at x = 1 is

|Et| ≈
∣∣∣∣ϵ(f(1 + h)− 2f(1) + f(1− h))

h2
− 1

12
h2f (iv)(ξ)

∣∣∣∣



where ξ ∈ (1− h, 1 + h) and ϵ is machine accuracy. Thus

|Et| ≲
4ϵe−1

h2
+

1

12
h2|f (iv)(1)|

since f(1± h) ≈ f(1) = e−1. We need 4e−x2
(3− 12x2 + 4x4) which gives |f (iv)(1)| = 20e−1

so that

|Et| ≲
4ϵe−1

h2
+

5

3
h2e−1

Minimising as a function of h gives

hopt = (12ϵ/5)1/4 ≈ 0.012

7. We need to consider the full Taylor series expansion of the approximation to f ′′(x0), thus

f(x0 + h)− 2f(x0) + f(x0 − h)

h2
= (1/h2)[(f + hf ′ + (h2/2)f ′′ + . . .+ (hk/k!)f (k) + . . .)

−2f

+(f − hf ′ + (h2/2)f ′′ − . . .+ (−1)k(hk/k!)f (k) + . . .)]

(omitting the argument x0 from the function f for brevity). And when we tidy everything

up we see that the odd powers of h cancel and we get

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
− 2

∞∑
k=1

h2k

(2k + 2)!
f (2k+2)(x0)

Thus, we may write N = f ′′, N1(h) is the approximation to N and the equation above

takes the form

N = N1(h) + a2h
2 + a4h

2 + . . . .

Let h → h/2 to get a new approximation

N = N1(h/2) + a2h
2/4 + a4h

2/16 + . . .

It follows that

N = N2(h) +O(h4)

when

N2(h) =
4N1(h/2)−N1(h)

3

In terms of the original evaluations of f , N2(h) is

4

3

f(x0 + h/2)− 2f(x0) + f(x0 − h/2)

(h/2)2
− 1

3

f(x0 + h)− 2f(x0) + f(x0 − h)

h2

which simplifies to the expression in the question and is evidently O(h4) accurate.



8. We apply Taylor’s theorem to the following linear combination

αf(x0) + βf ′(x0 + h) + γf(x0 − λh)

= αf(x0) + β

[
f ′(x0) + hf ′′(x0) +

h2

2
f ′′′(x0) +

h3

6
f (iv)(ξ1)

]
+ γ

[
f(x0)− λhf ′(x0) +

λ2h2

2
f ′′(x0)−

λ3h3

6
f ′′′(x0) +

λ4h4

24
f (iv)(ξ2)

]
= (α + γ)f(x0) + (β − λhγ)f ′(x0) +

h

2
(2β + λ2hγ)f ′′(x0) +

h2

6
(3β − λ3hγ)f ′′′(x0)

+
h3

24
(4βf (iv)(ξ1) + λ4hγf (iv)(ξ2) ,

where ξ1 is between x0 and x0 + h, and ξ2 is between x0 and x0 − λh. To obtain an

approximation for f ′′(x0) we require

α + γ = 0, β − λhγ = 0,
h

2
(2β + λ2hγ) = 1.

This leads to the following values

γ =
2

λh2(2 + λ)
, β =

2

h(2 + λ)
, α =

−2

λh2(2 + λ)
.

The resulting approximation is

f ′′(x0) =
−2f(x0) + 2λhf ′(x0 + h) + 2f(x0 − λh)

λh2(2 + λ)
+

(3− λ2)h

3(2 + λ)
f ′′′(x0) +O(h2).

We see that the error is in general O(h). However, if λ2 = 3 then the term proportional to

h vanishes and we obtain an error of order O(h2).
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