
Numerical Analysis Solutions for sheet 6

Lagrange polynomial interpolation, integration rules and Romberg

1. (a) Just have to use the formula in the notes, and x0 = 0, x1 = 1, x2 = 2 with f(x0) = 1,

f(x1) = 2, f(x2) = 4. We get

P2(x) =
(x− 1)(x− 2)

(−1)(−2)
1 +

(x− 0)(x− 2)

(1)(−1)
2 +

(x− 0)(x− 1)

(2)(1)
4.

Simplifying gives

P2(x) =
1

2
(x− 1)(x− 2)− 2x(x− 2) + 2x(x− 1) =

x2

2
+

x

2
+ 1.

(b) The error is defined (see notes) by

|f(x)− P2(x)| =
1

6
|f ′′′(ξ)||x(x− 1)(x− 2)|

for some ξ ∈ (0, 2). First, from f(x) = 2x, we have f ′(x) = ln(2)2x, and so

f ′′′(ξ) = (ln(2))32ξ. The maximum value of |f ′′′(ξ)| for ξ ∈ (0, 2) is therefore 4(ln(2))3.

Also, we need to find a bound on the second term |x(x− 1)(x− 2)| and this requires

d

dx
(x(x− 1)(x− 2)) = 0

which gives

3x2 − 6x+ 2 = 0.

Solving gives 3(x− 1)2 − 1 = 0 and so x = 1± 1/
√
3 at which

x(x− 1)(x− 2) = ±
(
1± 1/

√
3
) 1√

3

(
−1± 1/

√
3
)
= ± 1√

3

(
1

3
− 1

)
= ∓ 2

3
√
3
.

We conclude, therefore, that |x(x− 1)(x− 2)| < 2/3
√
3. Putting everything together,

we have that

|f(x)− P2(x)| ≤
1

6
× 4(ln(2))3 × 2

3
√
3
≈ 0.085.

(c) We can actually do this two ways. We can integrate P2(x) found in part (a) over

0 < x < 2; or we can use the Simpson rule, where h = 1, to give

I ≈ 1

3
[1 + 4× 2 + 4] =

13

3
≈ 4.333333

The actual value is easily found since if the derivative of 2x is ln(2)2x then the integral

of 2x is 2x/ ln(2) and so I = 3/ ln(2) ≈ 4.328085. The numerical error is −0.0052482.

According to the error formula given in Simpson’s rule, the error will be bounded by

h5

90
|f (iv)(ξ)|



for some ξ ∈ (0, 2). Here h = 1, f (iv)(ξ) = (ln(2))42ξ ≤ 4(ln(2))4 since ξ ∈ (0, 2). So

the error in the integral should be bounded by

4(ln(2))4

90
≈ 0.01025933.

Our computed error (−0.0052482) is below (about half) of this bound.

(d) Composite Simpson with n = 2 so that h = 1/2. This means we need to evaluate

f(0) = 1, f(1/2) =
√
2, f(1) = 2, f(3/2) = 2

√
2 and f(2) = 4 in Simpson’s rule:

I ≈ 1/2

3

(
1 + 4×

√
2 + 2× 2 + 4× 2

√
2 + 4

)
=

1

6

(
9 + 12

√
2
)
≈ 4.328427.

This has an error of 0.0003420 compared to the exact value. Since the error is O(h4)

we expect this error to be about 1/16th of 0.005282 ... which it is !

(e) We know that composite Simpson has error O(h4) and can be expanded in a power

series with leading term O(h4) (since Simpson is one Romberg step applied to

Trapezium rule which itself has a power series error). I.e.

I = S(h) + a4h
4 + . . .

where I is the exact value and I(h) is Simpson with step size h. Then

I = S(h/2) + a4h
4/16 + . . .

which means

I =
16S(h/2)− S(h)

15
+O(h6)

using the usual methods. In this problem S(1) = 4.3333 . . . and S(1/2) = 4.328427 so

I ≈ 4.328099 should be better. The exact value is 3/ ln(2) = 4.328085.

2. (a) Standard integral: I =
[
4 tan−1(x)

]1
0
= π.

(b) Using the formula for the composite trapeziodal scheme we have

T1 =
4

2

[
1 +

1

1 + 12

]
= 3

then, n = 2 and h = 1/2

T2 =
4

4

[
1 + 2× 1

1 + (1
2
)2

+
1

1 + 12

]
=

31

10
= 3.1

and then, n = 4, h = 1/4

T4 =
4

8

[
1 + 2× 1

1 + (1
4
)2

+ 2× 1

1 + (1
2
)2

+ 2× 1

1 + (3
4
)2

+
1

1 + 12

]
≈ 3.1311764

So we are getting closer to π as we expect.



(c) OK, so we have

T (1)
n = (4Tn − Tn/2)/3

which means

T
(1)
2 = (4T2 − T1)/3 = 3.1333333

and

T
(1)
4 = (4T4 − T2)/3 = 3.1415686.

Then, at the next step the Romberg iterates are defined by

T (2)
n = (16T (1)

n − T
(1)
n/2)/15

which we can only use with n = 4 to give

T
(2)
4 = (16T

(1)
4 − T

(1)
2 )/15 = 3.1421176.

We may wonder why T
(2)
4 is not as good as T

(1)
4 . It’s just that T

(1)
4 is, by accident,

closer to π than it should be.

(d) With n = 2, h = 1/2, Simpsons rule is

S2 =
4× 1

2

3

[
1 + 4

1

1 + (1
2
)2

+
1

1 + 12

]
= 3.1333333

which is the same as T
(1)
2 . This was demonstrated in the lectures, that one step of

Romberg gives you Simpson.

Similarly, we find S4 = 3.1415686 either by using the Simpson formula directly or by

equating to T
(1)
4 .

3. The composite trapezoidal rule for approximating the integral
∫ b

a
f(x) dx is based on a

subdivision of the interval [a, b] into n equal subintervals. The approximation has the form

Tn =
h

2
[f0 + 2f1 + 2f2 + 2f3 + 2f4 + . . .+ 2fn−1 + fn]

where h = (b− a)/n, fj = f(xj) and xj = a+ jh.

We have the iteration rules: T
(1)
n = (4Tn−Tn/2)/3 and T

(2)
n = (16T

(1)
n −T

(1)
n/2)/15. We apply

this to the first example which has the solution∫ 1

0

sin(x) dx = 1− cos(1) = 0.4596976941

The last approximation T
(2)
4 is quite good considering that only up to 4 subdivisions were

used. For the second example we obtain∫ 1

0

x ln(x) dx =

[
x2

2
ln(x)− x2

4

]1
0

= −0.25.



n Tn T
(1)
n T

(2)
n

1 0.4207354924

2 0.4500805155 0.4598621899

4 0.4573009376 0.4597077449 0.4596974486

n Tn T
(1)
n T

(2)
n

1 −0.0000000000

2 −0.1732867951 −0.2310490602

4 −0.2272271837 −0.2452073133 −0.2461511968

The approximation is clearly worse than in the first case. I don’t expect you to know the

reason, but the higher derivatives f (n)(x) for n ≥ 2 diverge at x = 0 and this has the

consequence of not being able to assume that the trapezoidal rule has an error which can

be expressed as an even power series in h, which is the foundation of the Romberg method.

4. We insert a general quadratic polynomial x(t) = αt2 + βt+ γ into the formula∫ 1

−1

x(t) dt = a x(−1/3) + b x(0) + c x(1/3).

On the left-hand side we obtain∫ 1

−1

[αt2 + βt+ γ] dt =

[
1

3
αt3 +

1

2
βt2 + γt

]1
−1

=
2

3
α + 2γ,

and on the right-hand side the result is

a

[
α

9
− β

3
+ γ

]
+ bγ + c

[
α

9
+

β

3
+ γ

]
= α

a+ c

9
+ β

c− a

3
+ γ(a+ b+ c).

We compare the coefficients of α, β and γ on both sides of the equation and obtain

a+ c

9
=

2

3
,

c− a

3
= 0, a+ b+ c = 2 =⇒ a = c = 3, b = −4.

The resulting approximation formula is∫ 1

−1

x(t) dt ≈ 3x(−1/3)− 4x(0) + 3 x(1/3).

This formula is also exact for any odd function satisfying x(−t) = −x(t) because then one

obtains zero on both sides of the equation (note that x(0) = 0 if x(t) is odd).

5. (a) The difficulty is the log-singularity at x = 0, which means we cannot use x0 = 0 as

an evaulation point. The solution could be the following:∫ 1

0

ln(sin(x)) dx =

∫ 1

0

ln(sin(x))− ln(x) dx+

∫ 1

0

ln(x) dx

=

∫ 1

0

ln(sin(x)/x) dx+ [x ln(x)− x]10

=

∫ 1

0

ln(sin(x)/x) dx− 1



Now we can use x0 = 0 as an integration point since as x → 0 the integrand tends to

ln(1) = 0.

(b) The problem here is that the range of integration is infinite. The solution is to map

[1,∞) to a finite interval via a mapping. Let’s choose, for example, t = 1/x. Then

dx = (−1/t2)dt and we get∫ ∞

1

1

1 + x2
dx =

∫ 0

1

−1

t2
1

1 + 1/t2
dt =

∫ 1

0

1

1 + t2
dt.

(c) The problem here is the singularity at x = 1 which means we cannot use xn = 1 as an

end point. We could either do something like in part (a) and subtract of the singularity

and add it back on or we could make a substitution. For example, x = sin θ, gives∫ 1

0

ex√
1− x2

dx =

∫ π/2

0

esin θ dθ.

(d) So this is a semi-infinite integral, but simply doing x = π/t to map it to a finite

integral as in part (b) is not good enough because the result involves an integrand

with sin(π/t) which becomes increasingly oscillatory as t → 0. So it’s the oscillations

that are the problem here, but they also provide us with an opportunity since

sin(x + nπ) = (−1)n sinx. Thus we map the intervals nπ < x < (n + 1)π to the

interval π < x < 2π to give∫ ∞

π

sinx

x
dx =

∫ 2π

π

sinx

(
1

x
− 1

x+ π
+

1

x+ 2π
− . . .

)
dx.

We can write this as ∫ 2π

π

g(x) sinx dx

which we can deal with using regular integration rules like trapezoidal or Simpson

in which g(x) =
∞∑
n=0

π

(x+ 2nπ)(x+ (2n+ 1)π)
can be approximated numerically by

truncating the infinite sum.
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