Numerical Analysis Solutions for sheet 6

Lagrange polynomial interpolation, integration rules and Romberg

1. (a) Just have to use the formula in the notes, and zq = 0, x1 = 1, 5 = 2 with f(z¢) = 1,
f(z1) =2, f(x2) = 4. We get

(r—=1)(z—2) (x —0)(x —2) (x —0)(x —1)
POy ooy T em
Simplifying gives
Py(x) %(m—1)(x—2)—2x(x—2)+2x(x—1) =T oL
(b) The error is defined (see notes) by
1

/(@) = Ba(a)| = Sl (©)llz(x — 1)z —2)]

for some ¢ € (0,2). First, from f(z) = 2%, we have f'(z) = In(2)2*, and so
(&) = (In(2))32%. The maximum value of |f”(£)] for £ € (0,2) is therefore 4(In(2))3.

Also, we need to find a bound on the second term |z(x — 1)(z — 2)| and this requires

d

(s = 1)(x —2) =0

which gives
32° — 6z +2 = 0.

Solving gives 3(z —1)> — 1 =0 and so # = 1 £ 1/4/3 at which

1 1 /1 2
2o - 1)(@—2) =+ (1£1/vV8) —= (-1 1/v3) =+ <——1> -
(=1 —2) IVB) oz (1 1vB) =k (5 1) =7
We conclude, therefore, that |z(x — 1)(x — 2)| < 2/3+/3. Putting everything together,
we have that

|f(z) = Pa(x)] < é x 4(In(2))? x % ~ 0.085.

(c) We can actually do this two ways. We can integrate P»(z) found in part (a) over
0 < z < 2; or we can use the Simpson rule, where h = 1, to give
1 13
I~ [L4+4x2+44] = ~4.333333
The actual value is easily found since if the derivative of 2% is In(2)2” then the integral

of 27 is 2% /1n(2) and so I = 3/1n(2) ~ 4.328085. The numerical error is —0.0052482.

According to the error formula given in Simpson’s rule, the error will be bounded by

h5

= | f(v)
RG]



for some & € (0,2). Here h = 1, f)(£) = (In(2))*2¢ < 4(In(2))* since € € (0,2). So
the error in the integral should be bounded by

4(In(2))*
90
Our computed error (—0.0052482) is below (about half) of this bound.

~ 0.01025933.

Composite Simpson with n = 2 so that h = 1/2. This means we need to evaluate

f0)=1, f(1/2) =2, f(1) =2, f(3/2) = 2v/2 and f(2) = 4 in Simpson’s rule:

1%1—§)2<1+4X\/§+2x2+4x2\/§+4> :é(9+12\/§> ~ 4.328427.

This has an error of 0.0003420 compared to the exact value. Since the error is O(h?)
we expect this error to be about 1/16th of 0.005282 ... which it is !

We know that composite Simpson has error O(h*) and can be expanded in a power
series with leading term O(h?') (since Simpson is one Romberg step applied to

Trapezium rule which itself has a power series error). lLe.
I=S(h)+ash*+...
where I is the exact value and I(h) is Simpson with step size h. Then
I=5S(h/2)+ash*/16 + ...

which means

_ 16S(h/2) — S(h)
B 15

using the usual methods. In this problem S(1) = 4.3333... and S(1/2) = 4.328427 so
I ~ 4.328099 should be better. The exact value is 3/In(2) = 4.328085.

I

+ O(h®)

Standard integral: I = [4 tan’l(:c)](l) = .

Using the formula for the composite trapeziodal scheme we have

T1=§{1+1i12}:3
then, n =2 and h = 1/2
T2=§{1+2x1+1(%)2+1j121:%:3.1
and then, n =4, h =1/4
T4:%{1+2>< + 2 X L + 2 X L + L ]z3.1311764
8 1+ (5)? 1+ (5)? 1+ (3)2 1+12

So we are getting closer to m as we expect.



(c) OK, so we have
TV = (4T, — T,p2)/3

which means
T = (4T, — T1)/3 = 3.1333333

and
T = (4T, — Ty) /3 = 3.1415686.

Then, at the next step the Romberg iterates are defined by

TP = (16T — 1)) /15

which we can only use with n = 4 to give

TP = (167" — TV) /15 = 3.1421176.

)

We may wonder why T4(2) is not as good as T4(1). It’s just that T4(1 is, by accident,

closer to 7w than it should be.
(d) With n =2, h =1/2, Simpsons rule is

L. J MRS SRS S (PP
S 1+ (52 " 1+12] 7

which is the same as T. 2(1). This was demonstrated in the lectures, that one step of

Romberg gives you Simpson.

Similarly, we find Sy = 3.1415686 either by using the Simpson formula directly or by
equating to T4(1).

3. The composite trapezoidal rule for approximating the integral fab f(z)dz is based on a

subdivision of the interval [a, b] into n equal subintervals. The approximation has the form

T, = Slo+ 2fi 426+ 205+ 2a b -+ s+ il

where h = (b—a)/n, f; = f(z;) and z; = a + jh.
We have the iteration rules: T)\") = (4T, —T,/2)/3 and TP = (16T,(L1) —Té}é)/l& We apply

this to the first example which has the solution

1
/ sin(z) dx = 1 — cos(1) = 0.4596976941
0

The last approximation 7. 4(2) is quite good considering that only up to 4 subdivisions were

used. For the second example we obtain

/01 zn(z) do = [%ln(x) - %] = —0.25.



D.

T, 7D 7
0.4207354924
0.4500805155  0.4598621899
0.4573009376  0.4597077449  0.4596974486

=~ NN =3

T, 7 7
—0.0000000000
—0.1732867951  —0.2310490602
—0.2272271837 —0.2452073133 —0.2461511968

N N

The approximation is clearly worse than in the first case. I don’t expect you to know the
reason, but the higher derivatives f™(x) for n > 2 diverge at + = 0 and this has the
consequence of not being able to assume that the trapezoidal rule has an error which can

be expressed as an even power series in h, which is the foundation of the Romberg method.

. We insert a general quadratic polynomial z(t) = at® + 8t + v into the formula

/1 2(8)dt = az(=1/3) + b(0) + cx(1/3).

1
On the left-hand side we obtain

! 1 1 b
/ [at® 4 Bt + 7] dt = {gat?’ + 55152 - ’ytl =30 + 27,
—1 -1

and on the right-hand side the result is

a f a f a+c c—a
—_ b —4 = = b .
alg 3+7]+ 7—1—0[9—1-3—1-7] a—g + 3 +7(@a+b+c)

We compare the coefficients of «, § and v on both sides of the equation and obtain

a—l—c_2 c—a
9 3 3

The resulting approximation formula is

=0, a+b+c=2 — a=c=3, b=—4.

/1 z(t)dt = 3x(—1/3) —4x(0) + 32(1/3).

1
This formula is also exact for any odd function satisfying x(—t) = —x(¢) because then one
obtains zero on both sides of the equation (note that x(0) = 0 if x(¢) is odd).

(a) The difficulty is the log-singularity at x = 0, which means we cannot use xy = 0 as

an evaulation point. The solution could be the following:

/01 In(sin(z)) dz = /01 In(sin(z)) — In(x) dz + /01 In(z) dx
= Jﬁlln($n(x)/x)dx<+[mln(x)—-aﬂé
= /01 In(sin(z)/x) dz — 1



Now we can use xg = 0 as an integration point since as  — 0 the integrand tends to
In(1) =0.

(b) The problem here is that the range of integration is infinite. The solution is to map
[1,00) to a finite interval via a mapping. Let’s choose, for example, ¢ = 1/x. Then
dr = (—1/t?)dt and we get

Sl | 1 1 L |
/ dx = ——dt:/ —dt.
. 1+ L 2141/t o 1+12

(¢) The problem here is the singularity at x = 1 which means we cannot use x,, = 1 as an

end point. We could either do something like in part (a) and subtract of the singularity

and add it back on or we could make a substitution. For example, x = sin 0, gives

1 e w/2
———dr = ™0 de.
/0 V1—az? /0

(d) So this is a semi-infinite integral, but simply doing x = 7/t to map it to a finite
integral as in part (b) is not good enough because the result involves an integrand
with sin(7/t) which becomes increasingly oscillatory as ¢ — 0. So it’s the oscillations
that are the problem here, but they also provide us with an opportunity since
sin(z + nm) = (—1)"sinz. Thus we map the intervals nm < = < (n + 1)7 to the

interval 7 < x < 27 to give

® sinx am 1 1 1
dr = sinz | — — + — ... ) dx.
,, x - r x4+7m x+27T

We can write this as

2w
/ g(z)sinz dx

which we can deal with using regular integration rules like trapezoidal or Simpson

in which g(z) = ; o 2n7r)(:v7:— @n T D7) can be approximated numerically by

truncating the infinite sum.
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