

Lagrange polynomial interpolation, integration rules and Romberg

1. (a) Just have to use the formula in the notes, and $x_0 = 0$, $x_1 = 1$, $x_2 = 2$ with $f(x_0) = 1$, $f(x_1) = 2$, $f(x_2) = 4$. We get

$$P_2(x) = \frac{(x-1)(x-2)}{(-1)(-2)}1 + \frac{(x-0)(x-2)}{(1)(-1)}2 + \frac{(x-0)(x-1)}{(2)(1)}4.$$

Simplifying gives

$$P_2(x) = \frac{1}{2}(x-1)(x-2) - 2x(x-2) + 2x(x-1) = \frac{x^2}{2} + \frac{x}{2} + 1.$$

(b) The error is defined (see notes) by

$$|f(x) - P_2(x)| = \frac{1}{6}|f'''(\xi)||x(x-1)(x-2)|$$

for some $\xi \in (0, 2)$. First, from $f(x) = 2^x$, we have $f'(x) = \ln(2)2^x$, and so $f'''(\xi) = (\ln(2))^3 2^\xi$. The maximum value of $|f'''(\xi)|$ for $\xi \in (0, 2)$ is therefore $4(\ln(2))^3$. Also, we need to find a bound on the second term $|x(x-1)(x-2)|$ and this requires

$$\frac{d}{dx}(x(x-1)(x-2)) = 0$$

which gives

$$3x^2 - 6x + 2 = 0.$$

Solving gives $3(x-1)^2 - 1 = 0$ and so $x = 1 \pm 1/\sqrt{3}$ at which

$$x(x-1)(x-2) = \pm \left(1 \pm 1/\sqrt{3}\right) \frac{1}{\sqrt{3}} \left(-1 \pm 1/\sqrt{3}\right) = \pm \frac{1}{\sqrt{3}} \left(\frac{1}{3} - 1\right) = \mp \frac{2}{3\sqrt{3}}.$$

We conclude, therefore, that $|x(x-1)(x-2)| < 2/3\sqrt{3}$. Putting everything together, we have that

$$|f(x) - P_2(x)| \leq \frac{1}{6} \times 4(\ln(2))^3 \times \frac{2}{3\sqrt{3}} \approx 0.085.$$

(c) We can actually do this two ways. We can integrate $P_2(x)$ found in part (a) over $0 < x < 2$; or we can use the Simpson rule, where $h = 1$, to give

$$I \approx \frac{1}{3} [1 + 4 \times 2 + 4] = \frac{13}{3} \approx 4.333333$$

The actual value is easily found since if the derivative of 2^x is $\ln(2)2^x$ then the integral of 2^x is $2^x/\ln(2)$ and so $I = 3/\ln(2) \approx 4.328085$. The numerical error is -0.0052482 .

According to the error formula given in Simpson's rule, the error will be bounded by

$$\frac{h^5}{90} |f^{(iv)}(\xi)|$$

for some $\xi \in (0, 2)$. Here $h = 1$, $f^{(iv)}(\xi) = (\ln(2))^4 2^\xi \leq 4(\ln(2))^4$ since $\xi \in (0, 2)$. So the error in the integral should be bounded by

$$\frac{4(\ln(2))^4}{90} \approx 0.01025933.$$

Our computed error (-0.0052482) is below (about half) of this bound.

(d) Composite Simpson with $n = 2$ so that $h = 1/2$. This means we need to evaluate $f(0) = 1$, $f(1/2) = \sqrt{2}$, $f(1) = 2$, $f(3/2) = 2\sqrt{2}$ and $f(2) = 4$ in Simpson's rule:

$$I \approx \frac{1/2}{3} \left(1 + 4 \times \sqrt{2} + 2 \times 2 + 4 \times 2\sqrt{2} + 4 \right) = \frac{1}{6} (9 + 12\sqrt{2}) \approx 4.328427.$$

This has an error of 0.0003420 compared to the exact value. Since the error is $O(h^4)$ we expect this error to be about $1/16$ th of $0.005282 \dots$ which it is !

(e) We know that composite Simpson has error $O(h^4)$ and can be expanded in a power series with leading term $O(h^4)$ (since Simpson is one Romberg step applied to Trapezium rule which itself has a power series error). I.e.

$$I = S(h) + a_4 h^4 + \dots$$

where I is the exact value and $I(h)$ is Simpson with step size h . Then

$$I = S(h/2) + a_4 h^4 / 16 + \dots$$

which means

$$I = \frac{16S(h/2) - S(h)}{15} + O(h^6)$$

using the usual methods. In this problem $S(1) = 4.3333 \dots$ and $S(1/2) = 4.328427$ so $I \approx 4.328099$ should be better. The exact value is $3/\ln(2) = 4.328085$.

2. (a) Standard integral: $I = [4 \tan^{-1}(x)]_0^1 = \pi$.

(b) Using the formula for the composite trapezoidal scheme we have

$$T_1 = \frac{4}{2} \left[1 + \frac{1}{1+1^2} \right] = 3$$

then, $n = 2$ and $h = 1/2$

$$T_2 = \frac{4}{4} \left[1 + 2 \times \frac{1}{1+(\frac{1}{2})^2} + \frac{1}{1+1^2} \right] = \frac{31}{10} = 3.1$$

and then, $n = 4$, $h = 1/4$

$$T_4 = \frac{4}{8} \left[1 + 2 \times \frac{1}{1+(\frac{1}{4})^2} + 2 \times \frac{1}{1+(\frac{1}{2})^2} + 2 \times \frac{1}{1+(\frac{3}{4})^2} + \frac{1}{1+1^2} \right] \approx 3.1311764$$

So we are getting closer to π as we expect.

(c) OK, so we have

$$T_n^{(1)} = (4T_n - T_{n/2})/3$$

which means

$$T_2^{(1)} = (4T_2 - T_1)/3 = 3.1333333$$

and

$$T_4^{(1)} = (4T_4 - T_2)/3 = 3.1415686.$$

Then, at the next step the Romberg iterates are defined by

$$T_n^{(2)} = (16T_n^{(1)} - T_{n/2}^{(1)})/15$$

which we can only use with $n = 4$ to give

$$T_4^{(2)} = (16T_4^{(1)} - T_2^{(1)})/15 = 3.1421176.$$

We may wonder why $T_4^{(2)}$ is not as good as $T_4^{(1)}$. It's just that $T_4^{(1)}$ is, by accident, closer to π than it should be.

(d) With $n = 2$, $h = 1/2$, Simpsons rule is

$$S_2 = \frac{4 \times \frac{1}{2}}{3} \left[1 + 4 \frac{1}{1 + (\frac{1}{2})^2} + \frac{1}{1 + 1^2} \right] = 3.1333333$$

which is the same as $T_2^{(1)}$. This was demonstrated in the lectures, that one step of Romberg gives you Simpson.

Similarly, we find $S_4 = 3.1415686$ either by using the Simpson formula directly or by equating to $T_4^{(1)}$.

3. The composite trapezoidal rule for approximating the integral $\int_a^b f(x) dx$ is based on a subdivision of the interval $[a, b]$ into n equal subintervals. The approximation has the form

$$T_n = \frac{h}{2} [f_0 + 2f_1 + 2f_2 + 2f_3 + 2f_4 + \dots + 2f_{n-1} + f_n]$$

where $h = (b - a)/n$, $f_j = f(x_j)$ and $x_j = a + jh$.

We have the iteration rules: $T_n^{(1)} = (4T_n - T_{n/2})/3$ and $T_n^{(2)} = (16T_n^{(1)} - T_{n/2}^{(1)})/15$. We apply this to the first example which has the solution

$$\int_0^1 \sin(x) dx = 1 - \cos(1) = 0.4596976941$$

The last approximation $T_4^{(2)}$ is quite good considering that only up to 4 subdivisions were used. For the second example we obtain

$$\int_0^1 x \ln(x) dx = \left[\frac{x^2}{2} \ln(x) - \frac{x^2}{4} \right]_0^1 = -0.25.$$

n	T_n	$T_n^{(1)}$	$T_n^{(2)}$
1	0.4207354924		
2	0.4500805155	0.4598621899	
4	0.4573009376	0.4597077449	0.4596974486

n	T_n	$T_n^{(1)}$	$T_n^{(2)}$
1	-0.0000000000		
2	-0.1732867951	-0.2310490602	
4	-0.2272271837	-0.2452073133	-0.2461511968

The approximation is clearly worse than in the first case. I don't expect you to know the reason, but the higher derivatives $f^{(n)}(x)$ for $n \geq 2$ diverge at $x = 0$ and this has the consequence of not being able to assume that the trapezoidal rule has an error which can be expressed as an even power series in h , which is the foundation of the Romberg method.

4. We insert a general quadratic polynomial $x(t) = \alpha t^2 + \beta t + \gamma$ into the formula

$$\int_{-1}^1 x(t) dt = a x(-1/3) + b x(0) + c x(1/3).$$

On the left-hand side we obtain

$$\int_{-1}^1 [\alpha t^2 + \beta t + \gamma] dt = \left[\frac{1}{3} \alpha t^3 + \frac{1}{2} \beta t^2 + \gamma t \right]_{-1}^1 = \frac{2}{3} \alpha + 2\gamma,$$

and on the right-hand side the result is

$$a \left[\frac{\alpha}{9} - \frac{\beta}{3} + \gamma \right] + b\gamma + c \left[\frac{\alpha}{9} + \frac{\beta}{3} + \gamma \right] = \alpha \frac{a+c}{9} + \beta \frac{c-a}{3} + \gamma(a+b+c).$$

We compare the coefficients of α , β and γ on both sides of the equation and obtain

$$\frac{a+c}{9} = \frac{2}{3}, \quad \frac{c-a}{3} = 0, \quad a+b+c = 2 \quad \Rightarrow \quad a = c = 3, \quad b = -4.$$

The resulting approximation formula is

$$\int_{-1}^1 x(t) dt \approx 3x(-1/3) - 4x(0) + 3x(1/3).$$

This formula is also exact for any odd function satisfying $x(-t) = -x(t)$ because then one obtains zero on both sides of the equation (note that $x(0) = 0$ if $x(t)$ is odd).

5. (a) The difficulty is the log-singularity at $x = 0$, which means we cannot use $x_0 = 0$ as an evaluation point. The solution could be the following:

$$\begin{aligned} \int_0^1 \ln(\sin(x)) dx &= \int_0^1 \ln(\sin(x)) - \ln(x) dx + \int_0^1 \ln(x) dx \\ &= \int_0^1 \ln(\sin(x)/x) dx + [x \ln(x) - x]_0^1 \\ &= \int_0^1 \ln(\sin(x)/x) dx - 1 \end{aligned}$$

Now we can use $x_0 = 0$ as an integration point since as $x \rightarrow 0$ the integrand tends to $\ln(1) = 0$.

(b) The problem here is that the range of integration is infinite. The solution is to map $[1, \infty)$ to a finite interval via a mapping. Let's choose, for example, $t = 1/x$. Then $dx = (-1/t^2)dt$ and we get

$$\int_1^\infty \frac{1}{1+x^2} dx = \int_1^0 \frac{-1}{t^2} \frac{1}{1+1/t^2} dt = \int_0^1 \frac{1}{1+t^2} dt.$$

(c) The problem here is the singularity at $x = 1$ which means we cannot use $x_n = 1$ as an end point. We could either do something like in part (a) and subtract of the singularity and add it back on or we could make a substitution. For example, $x = \sin \theta$, gives

$$\int_0^1 \frac{e^x}{\sqrt{1-x^2}} dx = \int_0^{\pi/2} e^{\sin \theta} d\theta.$$

(d) So this is a semi-infinite integral, but simply doing $x = \pi/t$ to map it to a finite integral as in part (b) is not good enough because the result involves an integrand with $\sin(\pi/t)$ which becomes increasingly oscillatory as $t \rightarrow 0$. So it's the oscillations that are the problem here, but they also provide us with an opportunity since $\sin(x + n\pi) = (-1)^n \sin x$. Thus we map the intervals $n\pi < x < (n+1)\pi$ to the interval $\pi < x < 2\pi$ to give

$$\int_\pi^\infty \frac{\sin x}{x} dx = \int_\pi^{2\pi} \sin x \left(\frac{1}{x} - \frac{1}{x+\pi} + \frac{1}{x+2\pi} - \dots \right) dx.$$

We can write this as

$$\int_\pi^{2\pi} g(x) \sin x dx$$

which we can deal with using regular integration rules like trapezoidal or Simpson in which $g(x) = \sum_{n=0}^{\infty} \frac{\pi}{(x+2n\pi)(x+(2n+1)\pi)}$ can be approximated numerically by truncating the infinite sum.