Numerical Analysis Solutions for sheet 7

Orthogonal polynomials and Guassian quadrature

1.

(a)

(b)

Draw the two graphs, spot there is only one intersection, at x = x*, say, which is
obviously positive and less than 1. Solutions of 2® + 2 — 1 = 0 are equivalent to

solutions of # = 1/(1 + x?) (since 1 + z? is non-vanishing) and we are done.
The map is defined by z,,1 = g(z,) where g(z) = 1/(1 + 2?).
For 0 <z <1, g(z) € [,1] C [0,1] since it is monotonically decreasing and takes its

max/min values at z = 0, z = 1. Also

—2x
/ J—
which requires some work to establish. For example,
622 — 2
" o
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implies there is a max/min in the interval 0 < x < 1 at 2 = 1/v/3 at which
19'(1/v/3)] = 9/(8v/3) < 1. This is a maximum since ¢’(0) = 0 and ¢'(1) = 1.
Hence, by the Fixed Point Theorem, there exists a unique fixed point z* € (0, 1) s.t.
all zy € [0, 1] will converge to z*.

Finally, since ¢'(x) # 0 for  # 0 then ¢'(z*) # 0 and so the scheme has first order
convergence.
Here we are presented with z,,1 = g(x,) with

g(z) = S

2
T
Assuming a fixed point z* = (1 — z*)/(z*)? rearranges to the original cubic. So same

fixed point. Now
N 24z
g (I‘) - ZE‘3

whose size is greater than 1 for all 0 < z < 1. Hence |¢'(z*)| > 1 and the scheme

cannot converge to x* apart from if zy = z*.
Here we are presented with z,,4; = g(x,) with
22° + 1
g(x) = 3224 1
Assuming a fixed point z*(3(z*)* 4+ 1) = 2(z*)* + 1 rearranges to the original cubic.
So same fixed point. Now

'(2) 622(322 + 1) — 6z(22° + 1)  6x(z® +2 —1)
xTr) = =
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and so ¢'(z*) = 0. Since g(z) is continuous, there is a non-vanishing region around
xr = x* where |¢/(z)| < 1 and this means the scheme will converge for zy sufficiently

close to z*.

Different ways of getting to the required answer, but most direct is to set f(z*) =0

and write what is left in quadratic form

(z* — xn)Qf”(xn)/f/(xn) +2(z" — z) + f(xn>/f/(5cn) ~ 0

Solving gives

1 /1= 2f () f"(2a) /[ ()]
[ (@) ()

provided, obviously, that the square root is real. The issue here is which sign to take.

A S

We can assume that since z,, is close to z* that f(x,) is small and use this to expand

the square root using binomial expansion to

\/1 = 2f () f"(2n) [ [f'(z0)]* = 1 — f(fl;n)f//(xn)/[f/(xn)]Z

We see that if we take the — root we end up with an equation which doesn’t make

much sense, but if we take the + root we have

RSy f'(xn) _ _ f(zn) " (20) %_f@’n)
S T ( ERTITS ) £ ()

which is Newton’s method. So this tells us to choose the + root. To form an iterative

method, we let the approximation to * be x,,; so that

I LCON SO RN TSN
T = T ) (1 \/1 SNTIENT: )

(i) We have, with reference to the formula in the notes

Py(a) = Ay ( (3 - 1) _Lyslae - s (3 ) 1) A dxx>

72 ey )T e

and the middle term has an odd integrand in the integral in the numerator and

therefore evaluates to zero. We have to be really careful with algebra here
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Choosing P3(1) = 1 implies A3 = 2 and so Py(z) = 32° — 3.



(ii) Now Py(z) is trickier still

e (- 1)- LR )

and the other term is suppressed because it involves the integral of an odd integrand.

So
1
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Choosing Py(1) = 1 implies Ay = % and so we get the answer required. Phew.

You wouldn’t want to have to do Ps(x). Luckily you don’t because there’s a recurrence

relation which you can use to generate all these functions.

The zeros of Py(z) = 2% — 4 are when 2? = 3 or z; = —\% and T, = \/Lg The weights

are

= lwx (x_xz) T = L T
i [ @ E S a = [ aBa

since the integral of x is zero. Similarly,
1
(x — x1) /
Wy = w(x -1 \/_
’ /_1 ( )(1’2—1U1) —2/\/_ V3

L | 1 [t 1
]:/ dx:—/ dt
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after the change of variables © = (1 +t)/2. So the n = 2 Gauss-Legendre quadrature

Now

applied to the approximation of the integral gives

1 1 1 1

L A e 2E T 2T (A +ma) /2

Or

B 2 . 2 B 2 2 48
4+ (1132 4+ (1-1/V3)2 16/3+2/V3 16/3—2/v/3 61

The exact value of I is [tan™' ()]} = /4 ~ 0.7853.

~ 0.7868

The answer is relatively obvious, which is that the integration interval is larger. The
approximation to I is f(—1/v/3) + f(1/v/3) (2 point Gauss-Legendre quadrature)
where f(z) =1/(1+ z*) and this gives [ = 3/4 = 0.75.



3.

(a)

We start with ¢g(z) = 1. Next ¢1(z) = Ajz + By and we want ¢;(1) = A; + By = 1.
We also want
1 1 1 1
0= / xoo(z)Pr () de = / A2 + By dr = §A1 + 5]31.
0 0
Solving for A; and B gives ¢1(z) = 3z — 2.
Could use Gram-Schmidt, but let’s do this one by hand. Let ¢o(z) = Asx?+ Box+Cs.
Then ¢2(1) = AQ + BQ + Cg =1. Also

! ! 1 1 1
0= / oo () Pa(x) de = / Asx® + Boa? + Coxdx = ZA2 + EBZ + 502.
0 0

Already we can eliminate, say, Cs to leave %Al + %Bl = 1. We finally need

! ! 1 1 1
0= / $¢1($)¢2<$> dr = / (3&32 — 2.1’)(142372 -+ BQQC + Cg) dr = ZAZ + §B2 + §C2
0 0
This simplifies to
1 1
0= To t b
and so By = —gAQ which combines with the condition already linking As and Bs to

give Ay = 10, By = —12 and Cy = 3. Hence ¢o(z) as given in question.
You can do this using Gram-Schmidt if you prefer (it’s slightly more fiddly).
We use the orthogonality property (see lectures) and multiply both sides by w(x)po(x)

and integrate over 0 < z < 1 to give

1 2 1 1
/ o) dor = Z&n/ Ton(T)po(x) do = ao/ wgs () do
0 — 0 0
using orthogonality. Of course, ¢o(z) = 1 so we get

ag =

wl»—-|»&|>—n
|

Being asked for a 2-point approximation so need the two roots of ¢o(x) = 0. These

e when 12+ 144-120 66
v 20 T 10
So let 1 = (6 — v/6)/10 and x5 = (6 + v/6)/10. Then
" _/1:[ (z — (6 + v/6)/10) 10 (1 1(6+v6)) 1 V6
L (6= VB0 (6+V6)/10)  2v/6\3 20 10 ) 4 36

after tidying up the algebra. We do the same for w, with —v/6 replaced by +v/6

giving
So together our 2-point approximation is

/01 o f(z)de ~ <1 _ \/—6) F((6 —+6)/10) + (i + \?)/—f) £((6 +/6)/10).



(d) We know that the scheme in (c) exactly integrates cubic polynomials: that is if
f(x) = by + byx + box? + bzx® then

1 2
/ x(by + by + box® + byx®) do = Z w;(bo + by + box? + bax?)
0 i=1

is EXACT. If we make the substitution x = 1/t in the integral then we get
dr = (—1/t*)dt and

00 2
/ (bg/tB + bl/t4 + bg/t4 + bg/t6) dt = Z’w]'(bo + bll'j + bgl‘? -+ bgl'?)
1

j=1

We can make the RHS equal

> " 0ilbo/t] + by /t] + ba /1] + bs/t2)

J=1

if we let t; = 1/x; and v; = w;t} = w;/x} for j = 1,2.

(a) (i) the first two integrands are odd functions of x and so they integrate to zero.

Using the substitution suggested
1 ™
/ V1—2a2dx :/ sin®0df = /2
~1 0

and

1 s 1 T
/ x2\/1—x2dx:/ cos? Osin 0 df) = Z/ sin?(20) df = /8
—1 0 0

(ii) So Up(x) = 1 is polynomial of degree 0 satisfying the standardisation condition.
Next let Uy(x) = Az + B;. Then we require

(Up,Uy) =0 = Al/llx\/fx?dﬁ&/ll@dx: By /2
It follows that By = 0 and A; = 2 to ensure U;(1) = 2. Thus U;(x) = 2z.
Next let Us(x) = Asz? + Box + Cy. Then we require
(Uo,Uy) =0 = Ay(m/8) + 0.By + Cy(7/2)
after using results from (i) and
(Uy,Us) =0=0.Ay+ (7/8)By + 0.C4

meaning By = 0 and so Cy = —Ay/4. Then Us(z) = Ag(xz® — 1/4) and Usy(1) = 3
means A, = 4. So finally we have Uy(z) = 42 — 1.

(iii) We are directed to choose n = 2 and so z; are zeros of U(x). Le. we solve
42% — 1 = 0 which gives z; = —1/2 and zy = +1/2 (say). Then

1 j—
wl—/ V" de =7/4.
-1

1 — T2




after inserting the definitions and using results from (i). Likewise

! r—x
wy = V1— a2 L dx = 7/4.
-1

To — 7

Thus, the 2 point quadrature scheme is

| H@VT=R e~ S+ £072)

and this is exact if f(x) is a polynomial of degree 3 or less.
(iv) The exact value of the integral is easy to determine: 7/4 ~ 1.273.

To apply scheme to integral given, we need to define
f(z) = cos(mz/2)/V1 — 22

Then

1 T [cos(=m/4) cos(+m/4)\ = m
/1cos(ﬁx/2)dm~ 1 (m + m) =% ~ 1.283.

So not bad then...
(i) Defining z;, j = 1,...,n to satisfy U, (z;) = 0 we have
sin[(n + 1) cos™ ! (z;)] = 0
and so
(n+1)cos ™ (z;) = jm
or
x; = cos(jm/(n + 1)), j=1,...,n.
(ii) Start with LHS:

sin[(n + 1+ 1)cos™}(z)]  sin[(n — 1+ 1) cos™}(z)]
sin[cos™1 ()] sin[cos™1 ()]

Un+1(13) + Un_l(l‘) =

and the RHS is

2sin[(n + 1) cos™!(z) cos[cos ™ (z)]

sin[cos™1 ()]

= 22U, (z)

So here f(z) = 2z.
We can see directly from n = 0 that Uy = 1 and from n = 2 that (sin 260 = 2sin 6 cos 0)

Uy () = sin[2 cos™ ()]

=2 )] = 2a.
snfcos1(2)] cos[cos™ (x)] = 2z
So the formula works for n = 0 and n = 1 whereby U, (z) is a polynomial of degree n.
The recurrence relation shows, by induction, that if u,(x) is a polynomial of degree

n, then U, (x) is a polynomial of degree n + 1.



Finally, we have to be a bit clever about the standardisation condition being met as
it’s a 0/0 limit:
sin[(n + 1)y]

i sin[(n + 1) cos™ ()] iy Sl D]
Unl1) = alc—>1 sin[cos™1 ()] zl/—>0 siny (n+1)

after using y = cos™!(z).
(iii) Follow methods in notes for Chebychev polynomials. Similar approach and it

works.

5. We first calculate some integrals that we will need in the following. We use the substitution
xr =cosf, dv = —sin 6 df to find

! bl T sin 6 T

1 _— 1 :L,Qn—i-l
w(zr) ™ de = ———dx =0, 1
J i@ = (1)

1 1 2 s s
2qp— [ e 2999~ [ 1 _T
/_1 w(z)z®de = /_1 mdm /0 cos” 6 df /0 2[1 + cos(20)] do 5

! T 1 3
/ w(z) 2t doe = / cos 0df = / Z[l + cos(20)])* df = 5

1 0 0

The second integral vanishes because it is an integral over an odd function.

(a) We have Ty(x) =1 and

Ti(z) = A, (x— 2”{"3) Ag—a

using (1) and standardisation condition. Next

(2 x>x )
(x,x) (1,1)

using (1). Then A; = 2 so that Ty(z) = 222 — 1. Next

(z(22° = 1), (22> = 1)) 5 o (z(22° = 1), x>x
@2 n.ee-n) & "V, )

) = Ay (2% —1/2)

Ts(z) = A3 (x(21:2 —1) -

The middle term is zero since it involves odd powers of x. This leaves us with

Ts(z) = As (2:);3 —z - xW) = As <2x3 - gx)

Then we find A3 = 2 so that T3(1) = 1 and T3(z) = 42 — 3z.

The relations to T),(z) = cos[n cos™!(z)] follow since if we let = cos 0, Ty(z) = 22%—1
translates to cos 20 = 2 cos® § —1 and Ty(x) = 42® — 3z is just cos 30 = 4 cos®  —3 cos

which are both standard results.



(b) We can now calculate the weights in the Gauss-Chebyshev quadrature formula. For

n = 1 the roots of Ti(x) are x; = 0. We use equations (1) and the formula for the

weight to obtain

wlz/1 w(z)dr = .

1

For n = 2 we have the roots of Ty(x) are x; = —1/\/5, 29 = 1/4/2. The formulae for
the weights are

1 _ _

wlz/ w(:v)(m x2>dx:7r< o )
-1 Tr1 — X2 Ir1 — X2
1 _ _

UJQZ/ w(:z:)(x xl)dxzw( o ):
-1 To — X1 To —I1

where we used equations (1).

For n = 3 the roots of T3(x) are x; = —v/3/2, x5 = 0, x3 = v/3/2 and we have

AN I VY

! T — X9 T — T3 T+ 27 xox3 T
wr = 'lU(,I) dox = = —,
1 T1 — To T1 — T3 2(xy —xg) (2 —x3) 3
L Tr— T T — I3 T+ 27 X123 T
wy = w(z) dr = = —,
-1 To — X1 To — I3 2 (1’2 — .ﬁlﬁ'l) (1’2 — 1'3) 3
! T — T T — Xo T+ 27T X129 T
w3 = w(z) dr = -
-1 T3 — I1 T3 — To 2 (56'3 — .%'1) (LIZ'g — .%'2) 3
where we used equations (1) again.
We see that in all cases the results agree with the general formula w; = 7/n,

j=1,...,n.

If you just use f(x) = In|x — t| you can see there is a singularity at x =t and f(x) is
not very much like a smooth polynomial. This will give poor results. So we have to

think of ways to remove the singularity.

If t # £1 we can propose the follow

/1ln|:1c—t|_ "Inlz —t| Inlz—t N 1 /1
1 V1 — 22 aV1l=22 V1 -—1¢2 V1i—11 ),

Then the final term can be integrated explicitly since

1 ¢ 1
/ In|z—tlde = / In(t — x) d:)c+/ In(x —t) dx
-1 -1 t

= [x—(t—2)In(t—2)]", +[(x—t)n(z—t) — 2],

= [t+D)+@t+D)In(t+1)]+[(1—t)— (1 —=1¢)In(l —1)].

In |z — t| du.

The integral on the RHS can be written

[



where

s.t.

f(z) =Injz —t] (1_%)

f(x) — 0 as * — ¢t and so the singularity has been removed. Indeed, f(z) is a

smooth function of x to which Gauss-Chebyshev quadrature can be used effectively.

However, I don’t yet have an answer for what to do when ¢ = +1.

(a) (a)

When n is odd, z" is an odd function and so multiplying by the even function

a2 . . .
e~® and integrating over —oo < x < 00 is zero.

Note Iy = / e dx = /7 is a standard integral.

o0
Now we integrate by parts

00 on—1,—22 ™ o0
2n —1
Iy, = / 2! (xeﬂ”z) dx = [_—x 2e ] + n2 / 22207 dy

—0o0 o0

so that

(2n —1)
2

as required. Now apply repeatedly to get

(2n—1)(2n —3)...3.1
on

[2n = 12n72

IQn - ]0

and recognise that

(2n)(2n —1)(2n —2)(2n —3)...3.21  (2n)!
(2n)(2n —2)...4.2 2y

(2n—1)2n—3)...3.1 =

Then putting back together gives desired result.
Let’s do it using method 1 of the notes. So

Ho(1) =1

satisfies the standardisation condition. Next, we choose Hy(z) = x + By, which

satisfies the standardisation condition. And then
0= <H1, H0> = <(,IT, 1> + Bl<17 1> = Il + Bljo

so B; =0 and Hy(x) = z. Next let Hy = 22 + Box + C5 which again satisfies the
standardisation condition and now

0 = (Hy, Hy) = (2°,1) + Bo(w, 1) + Cy(1,1) = g + O/

i —_1
gives Cy = —35 and

0= (Hp, Hy) = (2*, ) + By(z, ) + Co(l,2) = Bzg

so By = 0. Thus
Hy(z) = 2* —1/2.



(c) Need 2-point Gaussian Quadrature. So the roots of 2% — 1/2 = 0 are z; = —1/v/2,
Ty = +\/L§. The weights are defined by the usual fomula

wy =/ TTN o gy = g

0o L2 — X1

Wa

and
_/°° T — Ty o NZ3
= i o

(d) Here we want to define f(z) = e* 1+ 22 so that

0o 1 0o ﬁ e1/2 el/2 2ﬁ
I:/_ —da::/_ f(:c)w(x)alyc%7 1+%+1+% == el/2

oo 1+ 27 o0

This is 1.94818 and the exact answer is m which is not so good.

(e) A trickier question.
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