
Numerical Analysis Solutions for sheet 7

Orthogonal polynomials and Guassian quadrature

1. (a) Draw the two graphs, spot there is only one intersection, at x = x∗, say, which is

obviously positive and less than 1. Solutions of x3 + x − 1 = 0 are equivalent to

solutions of x = 1/(1 + x2) (since 1 + x2 is non-vanishing) and we are done.

(b) The map is defined by xn+1 = g(xn) where g(x) = 1/(1 + x2).

For 0 ≤ x ≤ 1, g(x) ∈ [1
2
, 1] ⊂ [0, 1] since it is monotonically decreasing and takes its

max/min values at x = 0, x = 1. Also

|g′(x)| =
∣∣∣∣ −2x

(1 + x2)2

∣∣∣∣ < 1, for 0 ≤ x ≤ 1

which requires some work to establish. For example,

g′′(x) =
6x2 − 2

(1 + x2)3

implies there is a max/min in the interval 0 < x < 1 at x = 1/
√
3 at which

|g′(1/
√
3)| = 9/(8

√
3) < 1. This is a maximum since g′(0) = 0 and g′(1) = 1

2
.

Hence, by the Fixed Point Theorem, there exists a unique fixed point x∗ ∈ (0, 1) s.t.

all x0 ∈ [0, 1] will converge to x∗.

Finally, since g′(x) ̸= 0 for x ̸= 0 then g′(x∗) ̸= 0 and so the scheme has first order

convergence.

(c) Here we are presented with xn+1 = g(xn) with

g(x) =
1− x

x2
.

Assuming a fixed point x∗ = (1− x∗)/(x∗)2 rearranges to the original cubic. So same

fixed point. Now

g′(x) =
−2 + x

x3

whose size is greater than 1 for all 0 < x < 1. Hence |g′(x∗)| > 1 and the scheme

cannot converge to x∗ apart from if x0 = x∗.

(d) Here we are presented with xn+1 = g(xn) with

g(x) =
2x3 + 1

3x2 + 1
.

Assuming a fixed point x∗(3(x∗)2 + 1) = 2(x∗)3 + 1 rearranges to the original cubic.

So same fixed point. Now

g′(x) =
6x2(3x2 + 1)− 6x(2x3 + 1)

(3x2 + 1)2
=

6x(x3 + x− 1)

(3x2 + 1)2



and so g′(x∗) = 0. Since g(x) is continuous, there is a non-vanishing region around

x = x∗ where |g′(x)| < 1 and this means the scheme will converge for x0 sufficiently

close to x∗.

(e) Different ways of getting to the required answer, but most direct is to set f(x∗) = 0

and write what is left in quadratic form

(x∗ − xn)
2f ′′(xn)/f

′(xn) + 2(x∗ − xn) + f(xn)/f
′(xn) ≈ 0

Solving gives

x∗ − xn ≈
−1±

√
1− 2f(xn)f ′′(xn)/[f ′(xn)]2

f ′′(xn)/f ′(xn)

provided, obviously, that the square root is real. The issue here is which sign to take.

We can assume that since xn is close to x∗ that f(xn) is small and use this to expand

the square root using binomial expansion to√
1− 2f(xn)f ′′(xn)/[f ′(xn)]2 ≈ 1− f(xn)f

′′(xn)/[f
′(xn)]

2

We see that if we take the − root we end up with an equation which doesn’t make

much sense, but if we take the + root we have

x∗ − xn ≈ f ′(xn)

f ′′(xn)

(
−1 + 1− f(xn)f

′′(xn)

[f ′(xn)]2

)
≈ − f(xn)

f ′(xn)

which is Newton’s method. So this tells us to choose the + root. To form an iterative

method, we let the approximation to x∗ be xn+1 so that

xn+1 = xn −
f ′(xn)

f ′′(xn)

(
1−

√
1− 2

f(xn)f ′′(xn)

[f ′(xn)]2

)
.

2. (a) (i) We have, with reference to the formula in the notes

P3(x) = A3

(
x

(
3

2
x2 − 1

2

)
−
∫ 1

−1
x(3

2
x2 − 1

2
)2 dx∫ 1

−1
(3
2
x2 − 1

2
)2 dx

(
3

2
x2 − 1

2

)
−
∫ 1

−1
x2(3

2
x2 − 1

2
) dx∫ 1

−1
x2 dx

x

)

and the middle term has an odd integrand in the integral in the numerator and

therefore evaluates to zero. We have to be really careful with algebra here

P3(x) = A3

(
3

2
x3 − 1

2
x−

(∫ 1

−1
3
2
x4 − 1

2
x2 dx

2
3

)
x

)

= A3

(
3

2
x3 − 1

2
x− 3

2

(
3

5
− 1

3

)
x

)
= A3

(
3

2
x3 − 1

2
x− 3

2

(
4

15

)
x

)
= A3

(
3

2
x3 − 9

10
x

)
Choosing P3(1) = 1 implies A3 =

5
3
and so P3(x) =

5
2
x3 − 3

2
x.



(ii) Now P4(x) is trickier still

P4(x) = A3

(
x

(
5

2
x3 − 3

2
x

)
−
∫ 1

−1
x(5

2
x3 − 3

2
x)(3

2
x2 − 1

2
) dx∫ 1

−1
(3
2
x2 − 1

2
)2 dx

(
3

2
x2 − 1

2

))

and the other term is suppressed because it involves the integral of an odd integrand.

So

P4(x) = A4

(
5

2
x4 − 3

2
x2 −

(∫ 1

0
15x6 − 14x4 + 3x2 dx∫ 1

0
9x4 − 6x2 + 1

)(
3

2
x2 − 1

2

))

= A4

(
5

2
x4 − 3

2
x2 −

( 15
7
− 14

5
+ 1

9
5
− 2 + 1

)(
3

2
x2 − 1

2

))
= A4

(
5

2
x4 − 3

2
x2 − 3

7

(
3

2
x2 − 1

2

))
= A4

(
5

2
x4 − 30

14
x2 +

3

14

)
.

Choosing P4(1) = 1 implies A4 =
7
4
and so we get the answer required. Phew.

You wouldn’t want to have to do P5(x). Luckily you don’t because there’s a recurrence

relation which you can use to generate all these functions.

(b) The zeros of P2(x) =
3
2
x2− 1

2
are when x2 = 3 or x1 = − 1√

3
and x2 =

1√
3
. The weights

are

w1 =

∫ 1

−1

w(x)
(x− x2)

(x1 − x2)
dx =

1

2/
√
3

∫ 1

−1

(x+ 1/
√
3) dx = 1

since the integral of x is zero. Similarly,

w2 =

∫ 1

−1

w(x)
(x− x1)

(x2 − x1)
dx =

1

−2/
√
3

∫ 1

−1

(x− 1/
√
3) dx = 1.

Now

I =

∫ 1

0

1

1 + x2
dx =

1

2

∫ 1

−1

1

1 + ((1 + t)/2)2
dt

after the change of variables x = (1 + t)/2. So the n = 2 Gauss-Legendre quadrature

applied to the approximation of the integral gives

I ≈ 1

2
w1

1

1 + ((1 + x1)/2)2
+

1

2
w2

1

1 + ((1 + x2)/2)2
.

Or

I =
2

4 + (1 + 1/
√
3)2

+
2

4 + (1− 1/
√
3)2

=
2

16/3 + 2/
√
3
+

2

16/3− 2/
√
3
=

48

61
≈ 0.7868

The exact value of I is [tan−1(x)]10 = π/4 ≈ 0.7853.

(c) The answer is relatively obvious, which is that the integration interval is larger. The

approximation to I is f(−1/
√
3) + f(1/

√
3) (2 point Gauss-Legendre quadrature)

where f(x) = 1/(1 + x2) and this gives I = 3/4 = 0.75.



3. (a) We start with ϕ0(x) = 1. Next ϕ1(x) = A1x+ B1 and we want ϕ1(1) = A1 + B1 = 1.

We also want

0 =

∫ 1

0

xϕ0(x)ϕ1(x) dx =

∫ 1

0

A1x
2 +B1x dx =

1

3
A1 +

1

2
B1.

Solving for A1 and B1 gives ϕ1(x) = 3x− 2.

Could use Gram-Schmidt, but let’s do this one by hand. Let ϕ2(x) = A2x
2+B2x+C2.

Then ϕ2(1) = A2 +B2 + C2 = 1. Also

0 =

∫ 1

0

xϕ0(x)ϕ2(x) dx =

∫ 1

0

A2x
3 +B2x

2 + C2x dx =
1

4
A2 +

1

3
B2 +

1

2
C2.

Already we can eliminate, say, C2 to leave 1
2
A1 +

1
3
B1 = 1. We finally need

0 =

∫ 1

0

xϕ1(x)ϕ2(x) dx =

∫ 1

0

(3x2 − 2x)(A2x
2 +B2x+ C2) dx =

1

4
A2 +

1

3
B2 +

1

2
C2.

This simplifies to

0 =
1

10
A2 +

1

12
B2

and so B2 = −6
5
A2 which combines with the condition already linking A2 and B2 to

give A2 = 10, B2 = −12 and C2 = 3. Hence ϕ2(x) as given in question.

You can do this using Gram-Schmidt if you prefer (it’s slightly more fiddly).

(b) We use the orthogonality property (see lectures) and multiply both sides by w(x)ϕ0(x)

and integrate over 0 < x < 1 to give∫ 1

0

x3ϕ0(x) dx =
2∑

n=0

an

∫ 1

0

xϕn(x)ϕ0(x) dx = a0

∫ 1

0

xϕ2
0(x) dx

using orthogonality. Of course, ϕ0(x) = 1 so we get

a0 =
1
4
1
2

=
1

2
.

(c) Being asked for a 2-point approximation so need the two roots of ϕ2(x) = 0. These

are when

x =
12±

√
144− 120

20
=

6±
√
6

10
.

So let x1 = (6−
√
6)/10 and x2 = (6 +

√
6)/10. Then

w1 =

∫ 1

0

x
(x− (6 +

√
6)/10)

((6−
√
6)/10− (6 +

√
6)/10)

= − 10

2
√
6

(
1

3
− 1

2
.
(6 +

√
6)

10

)
=

1

4
−

√
6

36

after tidying up the algebra. We do the same for w2 with −
√
6 replaced by +

√
6

giving

w2 =
1

4
+

√
6

36
.

So together our 2-point approximation is∫ 1

0

xf(x) dx ≈

(
1

4
−

√
6

36

)
f((6−

√
6)/10) +

(
1

4
+

√
6

36

)
f((6 +

√
6)/10).



(d) We know that the scheme in (c) exactly integrates cubic polynomials: that is if

f(x) = b0 + b1x+ b2x
2 + b3x

3 then∫ 1

0

x(b0 + b1x+ b2x
2 + b3x

3) dx =
2∑

i=1

wi(b0 + b1xi + b2x
2
i + b3x

3
i )

is EXACT. If we make the substitution x = 1/t in the integral then we get

dx = (−1/t2)dt and∫ ∞

1

(b0/t
3 + b1/t

4 + b2/t
4 + b3/t

6) dt =
2∑

j=1

wj(b0 + b1xj + b2x
2
j + b3x

3
j).

We can make the RHS equal

2∑
j=1

vi(b0/t
3
j + b1/t

4
j + b2/t

5
j + b3/t

6
j)

if we let tj = 1/xj and vj = wjt
3
j = wj/x

3
j for j = 1, 2.

4. (a) (i) the first two integrands are odd functions of x and so they integrate to zero.

Using the substitution suggested∫ 1

−1

√
1− x2 dx =

∫ π

0

sin2 θ dθ = π/2

and ∫ 1

−1

x2
√
1− x2 dx =

∫ π

0

cos2 θ sin2 θ dθ =
1

4

∫ π

0

sin2(2θ) dθ = π/8

(ii) So U0(x) = 1 is polynomial of degree 0 satisfying the standardisation condition.

Next let U1(x) = A1x+B1. Then we require

⟨U0, U1⟩ = 0 = A1

∫ 1

−1

x
√
1− x2 dx+B1

∫ 1

−1

√
1− x2 dx = B1π/2

It follows that B1 = 0 and A1 = 2 to ensure U1(1) = 2. Thus U1(x) = 2x.

Next let U2(x) = A2x
2 +B2x+ C2. Then we require

⟨U0, U2⟩ = 0 = A2(π/8) + 0.B2 + C2(π/2)

after using results from (i) and

⟨U1, U2⟩ = 0 = 0.A2 + (π/8)B2 + 0.C2

meaning B2 = 0 and so C2 = −A2/4. Then U2(x) = A2(x
2 − 1/4) and U2(1) = 3

means A2 = 4. So finally we have U2(x) = 4x2 − 1.

(iii) We are directed to choose n = 2 and so xj are zeros of U2(x). I.e. we solve

4x2 − 1 = 0 which gives x1 = −1/2 and x2 = +1/2 (say). Then

w1 =

∫ 1

−1

√
1− x2

x− x2

x1 − x2

dx = π/4.



after inserting the definitions and using results from (i). Likewise

w2 =

∫ 1

−1

√
1− x2

x− x1

x2 − x1

dx = π/4.

Thus, the 2 point quadrature scheme is∫ 1

−1

f(x)
√
1− x2 dx ≈ π

4
(f(−1/2) + f(1/2))

and this is exact if f(x) is a polynomial of degree 3 or less.

(iv) The exact value of the integral is easy to determine: π/4 ≈ 1.273.

To apply scheme to integral given, we need to define

f(x) = cos(πx/2)/
√
1− x2

Then ∫ 1

−1

cos(πx/2) dx ≈ π

4

(
cos(−π/4)√

1− 1/4
+

cos(+π/4)√
1− 1/4

)
=

π√
6
≈ 1.283.

So not bad then...

(b) (i) Defining xj, j = 1, . . . , n to satisfy Un(xj) = 0 we have

sin[(n+ 1) cos−1(xj)] = 0

and so

(n+ 1) cos−1(xj) = jπ

or

xj = cos(jπ/(n+ 1)), j = 1, . . . , n.

(ii) Start with LHS:

Un+1(x) + Un−1(x) =
sin[(n+ 1 + 1) cos−1(x)]

sin[cos−1(x)]
+

sin[(n− 1 + 1) cos−1(x)]

sin[cos−1(x)]

and the RHS is

2 sin[(n+ 1) cos−1(x) cos[cos−1(x)]

sin[cos−1(x)]
= 2xUn(x)

So here f(x) = 2x.

We can see directly from n = 0 that U0 = 1 and from n = 2 that (sin 2θ = 2 sin θ cos θ)

U1(x) =
sin[2 cos−1(x)]

sin[cos−1(x)]
= 2 cos[cos−1(x)] = 2x.

So the formula works for n = 0 and n = 1 whereby Un(x) is a polynomial of degree n.

The recurrence relation shows, by induction, that if un(x) is a polynomial of degree

n, then Un+1(x) is a polynomial of degree n+ 1.



Finally, we have to be a bit clever about the standardisation condition being met as

it’s a 0/0 limit:

Un(1) = lim
x→1

sin[(n+ 1) cos−1(x)]

sin[cos−1(x)]
= lim

y→0

sin[(n+ 1)y]

sin y
= (n+ 1)

after using y = cos−1(x).

(iii) Follow methods in notes for Chebychev polynomials. Similar approach and it

works.

5. We first calculate some integrals that we will need in the following. We use the substitution

x = cos θ, dx = − sin θ dθ to find∫ 1

−1

w(x) dx =

∫ 1

−1

1√
1− x2

dx =

∫ π

0

sin θ

sin θ
dθ =

∫ π

0

dθ = π ,∫ 1

−1

w(x)x2n+1 dx =

∫ 1

−1

x2n+1

√
1− x2

dx = 0 , (1)∫ 1

−1

w(x)x2 dx =

∫ 1

−1

x2

√
1− x2

dx =

∫ π

0

cos2 θ dθ =

∫ π

0

1

2
[1 + cos(2θ)] dθ =

π

2
,∫ 1

−1

w(x)x4 dx =

∫ π

0

cos4 θ dθ =

∫ π

0

1

4
[1 + cos(2θ)]2 dθ =

3π

8
.

The second integral vanishes because it is an integral over an odd function.

(a) We have T0(x) = 1 and

T1(x) = A1

(
x− ⟨x, 1⟩

⟨1, 1⟩

)
= A1x = x

using (1) and standardisation condition. Next

T2(x) = A2

(
x2 − ⟨x2, x⟩

⟨x, x⟩
x− ⟨x2, 1⟩

⟨1, 1⟩

)
= A2

(
x2 − 1/2

)
using (1). Then A2 = 2 so that T2(x) = 2x2 − 1. Next

T3(x) = A3

(
x(2x2 − 1)− ⟨x(2x2 − 1), (2x2 − 1)⟩

⟨(2x2 − 1), (2x2 − 1)⟩
(2x2 − 1)− ⟨x(2x2 − 1), x⟩

⟨x, x⟩
x

)
The middle term is zero since it involves odd powers of x. This leaves us with

T3(x) = A3

(
2x3 − x− x

(3π/4− π/2)

π/2

)
= A3

(
2x3 − 3

2
x

)
Then we find A3 = 2 so that T3(1) = 1 and T3(x) = 4x3 − 3x.

The relations to Tn(x) = cos[n cos−1(x)] follow since if we let x = cos θ, T2(x) = 2x2−1

translates to cos 2θ = 2 cos2 θ−1 and T3(x) = 4x3−3x is just cos 3θ = 4 cos3 θ−3 cos θ

which are both standard results.



(b) We can now calculate the weights in the Gauss-Chebyshev quadrature formula. For

n = 1 the roots of T1(x) are x1 = 0. We use equations (1) and the formula for the

weight to obtain

w1 =

∫ 1

−1

w(x) dx = π.

For n = 2 we have the roots of T2(x) are x1 = −1/
√
2, x2 = 1/

√
2. The formulae for

the weights are

w1 =

∫ 1

−1

w(x)

(
x− x2

x1 − x2

)
dx = π

(
−x2

x1 − x2

)
=

π

2
,

w2 =

∫ 1

−1

w(x)

(
x− x1

x2 − x1

)
dx = π

(
−x1

x2 − x1

)
=

π

2
,

where we used equations (1).

For n = 3 the roots of T3(x) are x1 = −
√
3/2, x2 = 0, x3 =

√
3/2 and we have

w1 =

∫ 1

−1

w(x)

(
x− x2

x1 − x2

) (
x− x3

x1 − x3

)
dx =

π + 2π x2x3

2 (x1 − x2) (x1 − x3)
=

π

3
,

w2 =

∫ 1

−1

w(x)

(
x− x1

x2 − x1

) (
x− x3

x2 − x3

)
dx =

π + 2π x1x3

2 (x2 − x1) (x2 − x3)
=

π

3
,

w3 =

∫ 1

−1

w(x)

(
x− x1

x3 − x1

) (
x− x2

x3 − x2

)
dx =

π + 2π x1x2

2 (x3 − x1) (x3 − x2)
=

π

3
,

where we used equations (1) again.

We see that in all cases the results agree with the general formula wj = π/n,

j = 1, . . . , n.

(c) If you just use f(x) = ln |x− t| you can see there is a singularity at x = t and f(x) is

not very much like a smooth polynomial. This will give poor results. So we have to

think of ways to remove the singularity.

If t ̸= ±1 we can propose the follow∫ 1

−1

ln |x− t|√
1− x2

=

∫ 1

−1

ln |x− t|√
1− x2

− ln |x− t|√
1− t2

dt+
1√

1− t2

∫ 1

−1

ln |x− t| dx.

Then the final term can be integrated explicitly since∫ 1

−1

ln |x− t| dx =

∫ t

−1

ln(t− x) dx+

∫ 1

t

ln(x− t) dx

= [x− (t− x) ln(t− x)]t−1 + [(x− t) ln(x− t)− x]1t

= [(t+ 1) + (t+ 1) ln(t+ 1)] + [(1− t)− (1− t) ln(1− t)] .

The integral on the RHS can be written∫ 1

−1

f(x)√
1− x2

dx



where

f(x) = ln |x− t|
(
1−

√
1− x2

√
1− t2

)
s.t. f(x) → 0 as x → t and so the singularity has been removed. Indeed, f(x) is a

smooth function of x to which Gauss-Chebyshev quadrature can be used effectively.

However, I don’t yet have an answer for what to do when t = ±1.

(a) (a) When n is odd, xn is an odd function and so multiplying by the even function

e−x2
and integrating over −∞ < x < ∞ is zero.

Note I0 =

∫ ∞

−∞
e−x2

dx =
√
π is a standard integral.

Now we integrate by parts

I2n =

∫ ∞

−∞
x2n−1

(
xe−x2

)
dx =

[
−x2n−1e−x2

2

]∞
−∞

+
2n− 1

2

∫ ∞

−∞
x2n−2e−x2

dx

so that

I2n =
(2n− 1)

2
I2n−2

as required. Now apply repeatedly to get

I2n =
(2n− 1)(2n− 3) . . . 3.1

2n
I0

and recognise that

(2n− 1)(2n− 3) . . . 3.1 =
(2n)(2n− 1)(2n− 2)(2n− 3) . . . 3.2.1

(2n)(2n− 2) . . . 4.2
=

(2n)!

2nn!

Then putting back together gives desired result.

(b) Let’s do it using method 1 of the notes. So

H0(1) = 1

satisfies the standardisation condition. Next, we choose H1(x) = x + B1, which

satisfies the standardisation condition. And then

0 = ⟨H1, H0⟩ = ⟨x, 1⟩+B1⟨1, 1⟩ = I1 +B1I0

so B1 = 0 and H1(x) = x. Next let H2 = x2 +B2x+C2 which again satisfies the

standardisation condition and now

0 = ⟨H2, H0⟩ = ⟨x2, 1⟩+B2⟨x, 1⟩+ C2⟨1, 1⟩ =
√
π

2
+ C2

√
π

gives C2 = −1
2
and

0 = ⟨H2, H1⟩ = ⟨x2, x⟩+B2⟨x, x⟩+ C2⟨1, x⟩ = B2

√
π

2

so B2 = 0. Thus

H2(x) = x2 − 1/2.



(c) Need 2-point Gaussian Quadrature. So the roots of x2 − 1/2 = 0 are x1 = −1/
√
2,

x2 = + 1√
2
. The weights are defined by the usual fomula

w1 =

∫ ∞

−∞

x− x1

x2 − x1

e−x2

dx =

√
π

2

and

w2 =

∫ ∞

−∞

x− x2

x1 − x2

e−x2

dx =

√
π

2
.

(d) Here we want to define f(x) = ex
2
1 + x2 so that

I =

∫ ∞

−∞

1

1 + x2
dx =

∫ ∞

−∞
f(x)w(x) dx ≈

√
π

2

(
e1/2

1 + 1
2

+
e1/2

1 + 1
2

)
=

2
√
π

3
e1/2

This is 1.94818 and the exact answer is π which is not so good.

(e) A trickier question.
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