
Numerical Analysis Solutions for sheet 8

Methods for solving Initial Value Problems

1. (a) We find using integrating factors that

d

dt
(ye−t) = −e−2t

and this integrates to

ye−t =
1

2
e−2t + C

where C = 1
2
from the initial condition and so

y(t) =
1

2
et +

1

2
e−t = cosh(t).

(b) Euler’s method with t = ih and h is the step-size

yi+1 = yi + h(yi − e−ih), y0 = 1

We solve by letting yi = yhi + ypi , solutions to the homogeneous difference equation and a

particular solution. Thus

yhi+1 = yhi (1 + h) and ypi+1 = ypi (1 + h)− he−ih

We let yhi = Ari and get

Ari+1 = Ari(1 + h)

so that r = (1 + h) and yhi = A(1 + h)i. For the particular solution, try ypi = Be−ih. Then

Be−(i+1)h −B(1 + h)e−ih = −he−ih

in which we can cancel e−ih terms to leave

B = h/(1 + h− e−h)

So we now have ypi = he−ih/(1 + h− e−h) and a general solution of

ypi =
A(1 + h)i + he−ih

(1 + h− e−h)
.

Finally, we impose y0 = 1 which gives A = 1− e−h and that’s the solution in the question.

(c) For the exact solution we have y(ih) = cosh(ih) ≈ 1 + i2h2/2 + . . . for ih ≪ 1 (the

MacLaurin series for cosh). We need a similar series expansion from the Euler solution in

part (b) and expand using binomial and MacLaurin to give

yi =
(1− e−h)(1 + ih+ i(i− 1)h2/2 + . . .) + h(1− ih+ i2h2/2 + . . .)

1 + h− e−h



and we can write this as

yi = 1 +
i2h2

2
+

(1− e−h)(ih− ih2/2)− ih2 + . . .

1 + h− e−h
.

Now we expand

yi = 1 +
i2h2

2
+

(h− h2/2 + . . .)(ih− ih2/2)− ih2 + . . .

2h− h2/2 + . . .

and simplify with a bit of binomial

yi ≈ 1 +
i2h2

2
+

−ih3 + . . .

2h
(1 + h/4 + . . .)

and the error between exact and Euler is therefore

y(ih)− yi =
ih2

2
+O(h3)

provided ih ≪ 1. Thus pick up the local truncation error and agrees with the notes for

Euler’s method. To establish the error at t = 1, we set i = N where N = 1/h and now

ih = 1 ̸≪ 1. So we need a different approach. The exact solution is

y(1) =
1

2
e +

1

2
e−1

For Euler we set i = 1/h in the solution to the difference equation to get

yN =
(1− e−h)(1 + h)1/h + he−h/h

1 + h− e−h

and make expansions based on h ≪ 1 so that

yN =
(h− h2/2 + . . .)exp{(1/h) ln(1 + h)}+ he−1

2h− h2/2 + . . .

We need to be very very careful with our expansions to make sure we keep enough terms.

So I get, after throwing away some higher-order terms which will not count

yN ≈ (1− h/2)

2(1− h/4)
exp{(1/h)(h− h2/2 + . . .)}+ e−1

2(1− h/4)

after using expansion for the log. Next, expand further to get

yN ≈ 1

2
(1− h/2)(1 + h/4)e1−h/2+... +

1

2
e−1(1 + h/4)

or

yN ≈ 1

2
e(1− h/2)(1 + h/4)(1− h/2) +

1

2
e−1(1 + h/4).

So I’m pretty confident we have

yN = cosh(1)(1 + h/4)− 1

2
he +O(h2)

and hence the global error is −h cosh(1)/4 + he/2 = O(h).



2. This is from the notes. The Taylor expansion of y(ti + h) up to third order is

y(ti + h) = y(ti) + hy′(ti) +
h2

2
y′′(ti) +

h3

6
y′′′(ti) +O(h4) . (1)

The differential equation y′(t) = f(t, y(t)) is used to replace the derivatives of y(t)

y′′(t) =
d

dt
f(t, y) = ft(t, y(t)) + fy(t, y(t)) y

′(t) = ft + fyf ,

y′′′(t) =
d

dt
[ft + fy f ] = ftt + fty f + fytf + fyyf

2 + fyft + fyfyf

Neglecting the O(h4) term in (1) one obtains the following iteration scheme

yi+1 = yi + hf(ti, yi) +
h2

2
[ft(ti, yi) + fy(ti, yi) f(ti, yi)] +

h3

6
[ftt(ti, yi)

+ 2fty(ti, yi) f(ti, yi) + fyy(ti, yi) f
2(ti, yi) + fy(ti, yi) ft(ti, yi) + f 2

y (ti, yi) f(ti, yi)] .

From notes with f(t, y) = 2ty and t = ih:

(a) Euler is

yi+1 = yi + 2htiyi = yi(1 + 2ih2)

(b) Taylor’s method of order two (ft = 2y, fy = 2t) is

yi+1 = yi + 2htiyi +
h2

2

[
2yi + 4yit

2
i

]
= yi(1 + 2ih2 + h2 + 2i2h4).

(c) Taylor’s method of order three (ftt = fyy = 0, fyt = 2) is what we got above plus the

O(h3) term:

yi+1 = yi(1 + 2ih2 + h2 + 2i2h4) +
h3

6

[
8tiyi + 4yiti + 8yit

3
i

]
and this comes out to be

yi+1 = yi(1 + 2ih2 + h2 + 2i2h4 + 2ih4 + (4/3)i3h6).

3. We start from the initial value problem

y′′′ = y′ + y , t ∈ [0, 1] , y(0) = 0 , y′(0) = 1 , y′′(0) = 0 .

This third order ODE can be transformed into a system of first order ODEs by setting

u(t) = y′(t) and v = y′′(t). This yields

y′ = u , y(0) = 0 , t ∈ [0, 1] ,

u′ = v , u(0) = 1 ,

v′ = u+ y , v(0) = 0 .



We apply Euler’s method to each of these lines and let yi, ui and vi denote the approxima-

tions for y(ti), u(ti) and v(ti), respectively. This results in

yi+1 = yi + hui , y0 = 0 ,

ui+1 = ui + h vi , u0 = 1 ,

vi+1 = vi + h (ui + yi) , v0 = 0 .

This is a system of first order difference equations which can be solved by iteration.

Alternatively, we can obtain from the second line vi = (ui+1 − ui)/h and from the first

line ui = (yi+1 − yi)/h, and we can use these relations to eliminate the u and v variables.

This leads to a third order difference equation in the variable y.

yi+3 − 2yi+2 + yi+1

h2
=

yi+2 − 2yi+1 + yi
h2

+ h

(
yi+1 − yi

h
+ yi

)
,

with initial conditions

y0 = 0 ,
y1 − y0

h
= 1 ,

y2 − 2y1 + y0
h2

= 0 .

This can be rewritten in the form

yi+3 = 3yi+2 − 3yi+1 + yi + h2 (yi+1 − yi + h yi) ,

with initial conditions

y0 = 0 , y1 = h , y2 = 2h .

4. We apply Taylor’s expansion in two variable to the equation

yi+1 = yi + af(ti, yi) + bf(ti + c, yi + d) .

and obtain

yi+1 = yi + af(ti, yi) + bf(ti, yi) + bcft(ti, yi) + bdfy(ti, yi) +
b

2
[fttc

2 + 2ftycd+ fyyd
2] + . . .

This is compared to Taylor’s method of order 2

yi+1 = yi + hf(ti, yi) +
h2

2
[ft(ti, yi) + fy(ti, yi) f(ti, yi)]

We find that

a+ b = h, bc =
h2

2
, bd =

h2

2
f(ti, yi).

These are three conditions for the four unknowns a, b, c and d. In the first case (modified

Euler method) we require also a = b and obtain

a = b =
h

2
, c = h, d = hf(ti, yi), yi+1 = yi +

h

2
f(ti, yi) +

h

2
f(ti + h, yi + hf(ti, yi)) .

In the second case we require 3a = b instead of a = b and obtain

a =
h

4
, b =

3h

4
, c =

2h

3
, d =

2h

3
f(ti, yi),

and hence

yi+1 = yi +
h

4
f(ti, yi) +

3h

4
f(ti +

2h

3
, yi +

2h

3
f(ti, yi)).



h = 0.1 h = 0.05 quotient

RK2 −0.00922482 −0.00229199 4.02 ≈ 4

RK4 −0.00001164 −0.00000075 15.5 ≈ 16

5. The exact solution is y(t) = exp(t2) and y(1) = e ≈ 2.71828183. The table below shows

the errors of the approximations. The last column contains the quotients of the errors for

h = 0.1 and h = 0.05. The quotients agrees with order of accuracy 2 and 4, respectively,

because halving the value of h leads to an approximate multiplication of the error by 2−2

and 2−4, respectively.
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