
Numerical Analysis Solutions for sheet 9

Multistep methods

1. The local truncation error for Milne’s implicit 2-step method

yi+1 = yi−1 + hβ0f(ti+1, yi+1) + hβ1f(ti, yi) + hβ2f(ti−1, yi−1) ,

is obtained by using f(t, y(t)) = y′(t) and Taylor expansion
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′(ti − h)

= y + hy′ +
h2

2
y′′ +

h3

6
y′′′ +

h4

24
y(4) +

h5

120
y(5) + . . .− y + hy′ − h2

2
y′′ +

h3

6
y′′′ − h4

24
y(4)

+
h5

120
y(5) + . . .− hβ0

[
y′ + hy′′ +

h2

2
y′′′ +

h3

6
y(4) +

h4

24
y(5) + . . .

]
− hβ1y

′

− hβ2

[
y′ − hy′′ +

h2

2
y′′′ − h3

6
y(4) +

h4

24
y(5) + . . .

]
= hy′[2− β0 − β1 − β2] + h2y′′[−β0 + β2] +

h3

6
y′′′[2− 3β0 − 3β2]

+
h4

6
y(4)[−β0 + β2] +

h5

120
y(5)[2− 5β0 − 5β2] + . . .

We require that the coefficients of the first three derivatives of y vanish

β0 + β1 + β2 = 2, β0 = β2, 3β0 + 3β2 = 2, =⇒ β0 = β2 =
1
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, β1 =

4

3
.

The coefficient of y(4) vanishes then also and the local truncation error is O(h5). The

corresponding order of accuracy is 4. The final result for the iteration scheme is

yi+1 = yi−1 +
h

3
[f(ti+1, yi+1) + 4f(ti, yi) + f(ti−1, yi−1)] .

2. The local truncation error is defined by (following method in notes)

τi+1 = y(ti + h)− α1y(ti)− αy(ti − h)− hβ0y
′(ti + h)
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We eliminate a series of terms... To get rid of terms proportional to y(ti), y

′(ti), y
′′(ti) in

turn gives the three relations

1− α1 − α2, 1 + α2 − β0, 1− α2 − 2β0



which when solved give β0 = 2/3, α1 = 4/3 and α2 = −1/3. The remaining term

proportional to y′′′(ti) does not vanish and is O(h3). Therefore the local truncation error

is O(h3) and the order of accuracy is 2.

3. The convergence of a multistep formula is proved by showing two points. First, that the

local truncation error is of order O(hp+1) with p > 0, and second, that the formula is

stable. If these two conditions are satisfied then it follows from Dahlquist’s theorem that

the global error is O(hp), and the formula converges to the exact solution as h goes to zero

if p > 0.

The stability of a multistep formula follows from the root condition: the formula is stable

if and only if all roots of the characteristic polynomial satisfy |z| ≤ 1 and any root with

|z| = 1 is simple. The characteristic polynomial is obtained by setting fi = 0 and yi = zi.

(a) yi+1 = yi. Local truncation error:

τi+1 = y(ti + h)− y(ti) = y + hy′ − y +O(h2) = hy′ + . . . .

The order of accuracy is p = 0 and the formula is not convergent. (Note that it does

not contain any information about the differential equation.) The stability polynomial

is z − 1 = 0. It satisfies the root condition and the formula is stable.

(b) yi+1 = yi−3 +
4
3
h(fi + fi−1 + fi−2). Local truncation error:

τi+1 = y(ti + h)− y(ti − 3h)− 4
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The stability polynomial is 0 = z4−1 = (z−1)(z+1)(z− i)(z+ i). The root condition

is satisfied, the order of accuracy is p = 2, and the formula is convergent.

(c) yi+1 = yi−1 +
1
3
h(7fi − 2fi−1 + fi−2). Local truncation error:

τi+1 = y(ti + h)− y(ti − h)− h

3
(7y′(ti)− 2y′(ti − h) + y′(ti − 2h))
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The stability polynomial is 0 = z2−1 = (z−1)(z+1). The root condition is satisfied,

the order of accuracy is p = 3, and the formula is convergent.



(d) yi+1 =
18
19
(yi − yi−1) + yi−3 +

6
19
h(fi+1 + 4fi + 4fi−2 + fi−3). Local truncation error:
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The stability polynomial is 0 = z4 − 18
19
z3 + 18

19
z2 − 1. Its roots are not easily found.

However, the order of accuracy is p = 0, so the formula is not convergent.

(e) yi+1 = −yi + yi−1 + yi−2 + 2h(fi + fi−1). Local truncation error:

τi+1 = y(ti + h) + y(ti)− y(ti − h)− y(ti − 2h)− 2h(y′(ti) + y′(ti − h))

= y + hy′ +
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The stability polynomial is 0 = z3+z2−z−1 = (z−1)(z+1)2. The order of accuracy

is p = 2, but the root condition is not satisfied because the root z = −1 is not simple.

Hence the formula is not convergent.

4. (a) Applying RK2 to y′ = λy gives k = λyi and so

yi+1 = yi + hλ(yi + (h/2)λyi)

which is

yi+1 = (1 + hλ+ (hλ)2/2)yi

The time-stability polynomial comes from substituting yi = Azi so that

z = 1 + hλ+ (hλ)2/2

which is linear and we require |z| < 1 for time stability.

If λ is real and λ < 0 then |1 + hλ+ (hλ)2/2| is no longer a complex modulus, and so

−1 < 1 + hλ+ (hλ)2/2 < 1

For the upper bound, hλ + (hλ)2/2 < 0 implies h > 0 and −hλ < 2 (remembering

λ < 0) or h < (−2/λ). The lower bound is never violated. Thus the RK2 method is

time stable for 0 < h < −2/λ for real negative λ.



(b) Here we get onto the boundary of the time stability region |z| < 1 by letting z = eiθ.

Thus

1 + h̄+ h̄2/2 = eiθ

for h̄ = hλ. Solving the quadratic for h̄ gives the equation requested.

The figure shows the time-stability region for RK2 in h̄-plane.

(c) Applying the new method to y′ = λy gives k = λyi+1

yi+1 = yi + hλ(yi+1 − (h/2)λyi+1)

So now

(1− hλ+ (hλ)2/2)yi+1 = yi

and time stability requires that

|1− hλ+ (hλ)2/2| > 1

(Note GREATER, like backward Euler in the notes). Taking λ to be real and negative

means we can intepret this as a real condition on the real line so that time stability

is ensured when

1− hλ+ (hλ)2/2 > 1, or 1− hλ+ (hλ)2/2 < −1

but since −hλ > 1 by definition, the first condition is always met and so the method

is time-stable for all h. In the complex plane the time-stability region is everywhere

outside a region in the RH complex plane as in the second figure. But we are only

interested in the LH plane and so this method is always time-stable.



5. We investigate the linear multistep formula

yi+1 = (1− η)yi + ηyi−1 +
1

2
(η + 3)hfi +

1

2
(η − 1)hfi−1 (∗)

which is a linear combination of AB2 (η = 0) and the central difference formula (η = 1).

(a) The zeros of the characteristic polynomial are determined by

0 = z2 − (1− η)z − η = (z − 1) (z + η) ,

and are given by z = 1 and z = −η. They satisfy the root condition if −1 < η ≤ 1.

This is the range of η over which the formula (*) is stable.

(b) The local truncation error is

τi+1 = y(ti + h)− (1− η)y(ti)− ηy(ti − h)− h
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We find a local truncation error of O(h3) and hence an order of accuracy p = 2 for all

η ̸= 5. The case η = 5 gives p = 3 but since the formula is then unstable this case is

not important.

(c) The scheme starts to produce sensible answers at h = 0.005. We assume that the

errors are then given by error(h) ≈ c hp where c is some constant and p is the order

of accuracy. To get rid of the unknown constant c we consider the quotients of the

errors for different values of h.

error(h1)

error(h2)
≈

(
h1

h2

)p



We insert the numerical values and compare the two sides of this equation for p = 2.

We find
error(0.005)

error(0.0025)
≈ 4 compared to

(
0.005

0.0025

)2

= 4,

and
error(0.0025)

error(0.001)
≈ 6.248 compared to

(
0.0025

0.001

)2

= 6.25.

We obtain good agreement and conclude that the errors behave as O(h2) as expected.

(d) Note that setting x(t) = y(t)− cos(t) transforms equation (1) into x′(t) = −100x(t).

This is of the general form that is used for investigating time stability. The multistep

formula for this problem with η = 0.5 has the form

xi+1 = 0.5xi + 0.5xi−1 − 175hxi + 25hxi−1. (∗)

We obtain the stability polynomial by inserting xi = zi

0 = z2 − (0.5− 175h)z − (0.5 + 25h).

The method is time stable for those values of h for which the two roots of the stability

polynomial both have modulus |z| < 1. One way to continue would be to determine

the two roots of the stability polynomial explicitly, but this is lengthy. One can find

the borders of the time stability region also by solving the equation for h and inserting

z = 1 and z = −1, respectively. This results in

h =
z2 − 0.5z − 0.5

25− 175z
=

0 if z = 1,

0.005 if z = −1.

We obtain the time stability region as 0 < h < 0.005. This agrees approximately with

the numerical results which are reasonable for h ≤ 0.005.

(a) The exact solution to the homogeneous second order ODE is found by assuming

solutions of the form y(t) = Aert and using it to derive the characteristic equation

r2 + 2γr + ω2 = 0

The two solutions are

r = −γ ±
√
γ2 − ω2

and so the general solution is

y(t) = Ae(−γ−
√

γ2−ω2)t +Be(−γ+
√

γ2−ω2)t

[Additional note for interest: if γ ≫ ω then we see from writing

−γ ±
√
γ2 − ω2 = −γ ± γ(1− (ω/γ)2)1/2 ≈ −γ ± γ

(
1− ω2

2γ2
+ . . .

)
So one root is approximately −2γ and −ω2/2γ when ω ≪ γ and so the approximate

solution is

y(t) = Ae−2γt +Be−(ω2/2γ)t



Note that the first term is rapidly decaying and the second term is slowly decaying.

Going further, application of the initial condition would give A = −ω2/(4γ2 − ω2),

B = 4γ2/(4γ2 − ω2). Then A would be small and B would be nearly equal to 1. This

is interesting, since it shows that there is a rapid decay by a small amount for short

times, and then a slow decay over the remaining displacement over longer times. See

figure.]

(b) If y′(t) = v(t) then, since v′(t) = y′′(t), we have from the ODE that

v′(t) = −2γv(t)− ω2y(t)

subject to y(0) = 1, v(0) = 0.

(c) Applying Euler to the first ODE gives

yi+1 = yi + hvi

and the second gives

vi+1 = vi + h(−2γvi − ω2yi).

The initial conditions translate to y0 = 1 and v0 = 0.

(d) Following notes, we take the first Euler equation and write

vi = (yi+1 − yi)/h

and substitute into the second equation to give

(yi+2 − yi+1)/h = (yi+1 − yi)/h+ h(−2γ(yi+1 − yi)/h− ω2yi).

which gives

yi+2 = 2yi+1 − yi − 2γh(yi+1 − yi)− ω2h2yi.

This is a second order difference equation for yi and we have y0 = 1 and y1 = y0+hv0 =

1 also.



(e) Solving the difference equation in the usual way: substitute yi = Azi to get the

quadratic equation

z2 − 2(1− γh)z + (1− 2γh+ ω2h2) = 0.

Its roots are

z = (1− γh)±
√

(1− γh)2 − (1− 2γh+ ω2h2)

which simplifies to

z = (1− γh)±
√

γ2h2 − ω2h2

and then to

z = 1− h(γ ±
√

γ2 − ω2).

(f) For solutions which decay as i → ∞ (which is required from the exact solution) we

require both roots to be less than unity in modulus, i.e.

|1− h(γ ±
√

γ2 − ω2)| < 1.

Now γ±
√

γ2 − ω2 > 0 and h > 0 and so 1−h(γ±
√

γ2 − ω2) < 1 is always guaranteed.

However, the lower bound will be violated when

1− h(γ ±
√

γ2 − ω2) < −1

implying

h >
2

γ ±
√

γ2 − ω2
.

Since γ +
√

γ2 − ω2 > γ −
√
γ2 − ω2, the lower bound is violated when

h >
2

γ +
√

γ2 − ω2
.

(g) This is a symptom of the restriction of time-stability on the Euler method, as

established by application of Euler to the canonical time-stability problem. In fact,

it is very closely related since the damping in the original 2nd order ODE is 2γ and,

for γ ≫ ω, the method is only stable for 0 < h ≲ 2/(2γ). In the notes we proved a

similar bound | − 2/λ| where −λ is the damping.

Note: this solution tells us that very large damping in a mechanical mass-spring-

damper system requires a very small step size even though the decay of solutions is

very gradual. This problem gives rise to the attribution “stiff ODE” to this type of

problem since large damping implies high mechanical stiffness.
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