UNIVERSITY OF BRISTOL

Examination for the Degrees of B.Sc. and M.Sci. (Levels 3 and M)

STATISTICAL MECHANICS 34

MATH M4500

(Paper Codes MATH-M4500)

May-June 2011, 2 hours 30 minutes

This paper contains five questions A candidate's FOUR best answers will be used for assessment.

Calculators are **not** permitted in this examination.

You may wish to use Stirling's formula which for $N \gg 1$, gives

$$ln N! \approx N ln N - N \quad .$$

For small x,

$$\cosh x = 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \dots ,$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots ,$$

$$\coth x = \frac{1}{x} + \frac{x}{3} - \frac{x^3}{45} + \dots$$

Do not turn over until instructed.

Cont... Stat Mechs 34-11

- 1. Consider a gas of N particles in a volume V.
 - (a) (**3 marks**)
 - i. At pressure p, what is the differential work done in expanding an infinitesimal volume dV?
 - ii. Use the 2nd law of thermodynamics to obtain expressions for

$$\left(\frac{\partial S}{\partial V}\right)_{EN}$$
 and $\left(\frac{\partial E}{\partial V}\right)_{SN}$,

where S is the entropy and E the internal energy of the gas.

(b) (**7 marks**)

Use the fact that the entropy, S(E, V, N), of a gas composed of N molecules with energy E, volume V is extensive to show that

$$S = E \left(\frac{\partial S}{\partial E} \right)_{V,N} + V \left(\frac{\partial S}{\partial V} \right)_{E,N} + N \left(\frac{\partial S}{\partial N} \right)_{E,V} ,$$

and hence that $E = TS - pV + \mu N$

- (c) Consider using a diatomic ideal gas composed of N molecules as the working substance of an engine whose reversible cycle $(1\rightarrow2\rightarrow3\rightarrow1)$ consists of three quasistatic steps: $1\rightarrow2$ is isobaric expansion (at constant pressure), $2\rightarrow3$ is a constant volume process (isochoric), $3\rightarrow1$ is isothermal compression (at constant temperature). The temperatures T_1 and T_2 at points 1 and 2 in the cycle are given.
 - i. (3marks) Draw this cycle in p V coordinates.
 - ii. (5 marks) For each step compute the work done by the gas and the heat added to the gas. Identify which steps have heat flowing into the gas.
 - iii. (3 marks) What is the efficiency of the cycle in terms of T_1 and T_2 ?
 - iv. (4 marks) Calculate the change in entropy and Helmholtz free energy at each step of the cycle.

2. (a) A simplified model of a magnet in a magnetic field **B** is a collection of N distinguishable spins which can each be characterised by a magnetic moment, a three dimensional vector of fixed magnitude μ and arbitrary orientation, \mathbf{S}_i , $i \in \{1, \ldots, N\}$. Due to its magnetic moment each 'spin' has lower energy when aligned with the field. The system is thus described by a Hamiltonian

$$\mathcal{H} = -\mu \sum_{i=1}^{N} \mathbf{B} \cdot \mathbf{S_i} , \quad |\mathbf{S}_i| = 1 ,$$

and the magnetization is given by $\mathbf{M} = \mu \sum_{i=1}^{N} \mathbf{S}_{i}$. Consider such a 'magnet' at a fixed temperature, T with the magnetic field $\mathbf{B} = B \hat{\mathbf{z}}$ (oriented along the z-axis).

- i. (3 marks) Which ensemble is appropriate for this system? What are the possible microstates?
- ii. (4 marks) What is the probability of being in a particular microstate?
- iii. (7 marks) Calculate the Helmholtz free energy and the average magnetization, $\langle \mathbf{M} \rangle$. Hence obtain an expression for the susceptibility, $\chi(T)$ defined as $\chi(T) = \left(\frac{\partial}{\partial \mathbf{B}} \cdot \langle \mathbf{M} \rangle\right)_{B=0}$.
- (b) A better model called the Heisenberg model, which takes account of interactions between the 'spins' and their d nearest neighbours (n.n) is described by a Hamiltonian

$$\mathcal{H} = -\mu \sum_{i=1} \mathbf{B} \cdot \mathbf{S}_i - \frac{J}{2} \sum_{i,j}^{\text{n.n.}} \mathbf{S}_i \cdot \mathbf{S}_j , \quad |\mathbf{S}_i| = 1,.$$

The second sum is over all d nearest neighbour (n.n.) pairs i, j.

A mean field (Weiss) approximation involves replacing the instantaneous magnetic field felt by each spin by its average. The instantaneous field on spin S_i is

$$\mathbf{B}_i = -\mu^{-1} \frac{\partial \mathcal{H}}{\partial \mathbf{S}_i} \quad .$$

i. (2 marks) Show that the average instantantenous effective field on spin i is

$$\langle \mathbf{B}_i \rangle = \mathbf{B} + \Delta \mathbf{B}$$
 ; $\Delta \mathbf{B} = Jd \langle \mathbf{S}_i \rangle / \mu$,

and hence obtain the mean-field Hamiltonian.

ii. (6 marks) Show that the mean-field model gives rise to the self-consistent equation

$$m = \left(\coth \left(\beta \mu B + \beta dJm \right) - \frac{1}{\left(\beta \mu B + \beta dJm \right)} \right) \quad , \quad m = \frac{M}{\mu N} \quad , \quad \langle \mathbf{M} \rangle = \hat{\mathbf{z}} M .$$

iii. (3 marks) Show graphically or otherwise that at zero external field, (B = 0) the mean-field equation implies a phase transition from a state with m = 0 to one with $m \neq 0$ at a finite temperature T.

- 3. (a) Consider a dilute gas of N particles in three dimensions with positions $\mathbf{q}_i(t)$ and momenta $\mathbf{p}_i(t)$, $(1 \le i \le N)$, which satisfy Hamilton's equations of motion. Its microstate is defined by the 6N-dimensional phase space (\mathbf{p}, \mathbf{q}) where $\mathbf{p} = (\mathbf{p}_1, \dots, \mathbf{p}_N)$, $\mathbf{q} = (\mathbf{q}_1, \dots, \mathbf{q}_N)$ with Hamiltonian $\mathcal{H}(\mathbf{p}, \mathbf{q})$.
 - i. (3 marks) What is the phase space density $\rho(\boldsymbol{p}, \boldsymbol{q}, t)$?
 - ii. (8 marks) Show that a consequence of Liouville's theorem is that the phase space density, $\rho(\mathbf{p}, \mathbf{q}, t)$ satisfies the equation

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \{\rho, \mathcal{H}\} = 0 \tag{1}$$

and explain the meaning of the **Poisson bracket** $\{A, B\}$.

(b) Non Hamiltonian dynamics in molecular dynamics simulations: consider a system of N particles in three dimensions with Hamiltonian, \mathcal{H} :

$$\mathcal{H}(\{\mathbf{p}_i, \mathbf{q}_i\}) = \sum_{i=1}^{N} \frac{1}{2m} |\mathbf{p}_i|^2 + \sum_{i \neq j} U(\mathbf{q}_i - \mathbf{q}_j) ,$$

where the equation of motion is modified by a friction term to

$$\dot{\mathbf{q}}_i = \frac{\partial \mathcal{H}}{\partial \mathbf{p}_i} \; ; \quad \dot{\mathbf{p}}_i = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}_i} - \lambda \mathbf{p}_i$$

i. (7 marks) Given that $\lambda(p)$ is function of momenta only, show that the Liouville theorem can be written in the form

$$\frac{\partial \rho}{\partial t} + \{\rho, \mathcal{H}\} = -C\lambda\rho + \mathbf{D} \cdot \frac{\partial \rho}{\partial \mathbf{p}},$$

and give the value of C, D in terms of λ and p.

ii. (7 marks) If $U(\mathbf{r}) = A|\mathbf{r}|^{-12} - B|\mathbf{r}|^{-6}$, what value of friction, $\lambda(\boldsymbol{p}, \boldsymbol{q})$ must be chosen for the kinetic energy to remain constant?

4. (a) (4 marks)

Write down expressions for the classical and quantum partition functions in the canonical ensemble for a set of N particles with momentum p_i and position q_i and Hamiltonian $\mathcal{H}(\{p_i,q_i\})$. Explain why Planck's constant appears in the classical formula.

(b) (**5 marks**)

The Hamiltonian for a classical harmonic oscillator of frequency ω is

$$\mathcal{H}\left(\left\{q,p\right\}\right) = \frac{p^2}{2m} + \frac{m\omega^2 \ q^2}{2} \ .$$

Calculate the free energy F , entropy S and internal energy E for the classical harmonic oscillator at temperature T.

- (c) i. (5 marks) Write down an expression for the energy levels of a quantum harmonic oscillator of frequency ω . Briefly explain how it is obtained.
 - ii. (6 marks) Hence calculate the free energy F, entropy S and internal energy E for the quantum harmonic oscillator at temperature T.
- (d) (5 marks)

Compare and contrast the specific heat capacity obtained from the classical and quantum calculations. Comment on what happens as $T \to 0$ and at high temperatures.

- 5. (a) Consider a classical system in the grand canonical ensemble.
 - i. (3 marks) Write down the expression for the *classical* grand partition function. How is this related to the grand potential?
 - ii. (5 marks) Calculate the mean number of particles $\langle N \rangle$ and the mean square fluctuations $\langle \Delta N^2 \rangle = \langle N^2 \rangle \langle N \rangle^2$ and hence obtain the relative mean-square fluctuation $\frac{\langle \Delta N^2 \rangle}{\langle N \rangle^2}$ in the thermodynamic limit.
 - (b) An ideal gas of *indistinguishable* classical particles of mass m is in a uniform attractive potential $U(\mathbf{r}) = -\varepsilon$ where $\varepsilon > 0$ in three dimensions and in contact with a reservoir at fixed chemical potential μ and temperature T. The gas is in a rectangular box of height h and base area A. There
 - i. (3 marks) Write down the Hamiltonian of the system.
 - ii. (5 marks) Evaluate the grand partition function \mathcal{Z} and hence the grand potential, \mathcal{G} of the system.
 - iii. (5 marks) Calculate the pressure, p and density, ρ and hence obtain a relationship between ρ , p and T.
 - iv. (4 marks) What happens as $\varepsilon \to \infty$?