Parameter dependent invariant measures for IFS - dimension and absolute continuity

Adam Śpiewak

Bar-Ilan University

joint work with Balázs Bárány, Károly Simon and Boris Solomyak arXiv:2107.03692

UK One Day Ergodic Theory Meeting

15th September 2021

Invariant measures for Iterated Function Systems (IFS)

IFS: collection $f_1, ..., f_m : X \to X$ of contractions on a compact set $X \subset \mathbb{R}^d$

(soon: X - compact interval and $f_j - C^{2+\delta}$ hyperbolic)

Attractor: a non-empty compact set $A \subset X$ with

$$A = f_1(A) \cup \ldots \cup f_m(A)$$

(it exists and is unique)

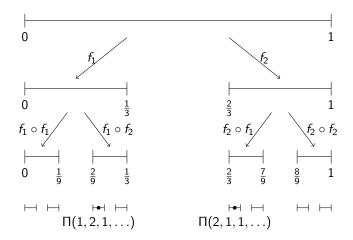
Symbolic space: $\Omega := \mathcal{A}^{\mathbb{N}}$, where $\mathcal{A} = \{1, \dots, m\}$

Natural projection: $\Pi : \Omega \to X$,

$$\Pi(\omega) := \bigcap_{n=1}^{\infty} f_{\omega_1} \circ \cdots \circ f_{\omega_n}(X)$$

where $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$. Then $A = \Pi(\Omega)$.

The middle-thirds Cantor set: $X = [0, 1], f_1(x) = \frac{1}{3}x, f_2(x) = \frac{1}{3}x + \frac{2}{3}$.



Invariant measures: let μ be (a shift-invariant, ergodic) finite measure on Ω . We are interested in properties of the projected measure $\Pi_*\mu$ on A.

E.g. if μ is the Bernoulli measure $(p_1, \ldots, p_m)^{\otimes \mathbb{N}}$, then $\nu = \prod_* \mu$ is the unique probability measure satisfying

$$\nu = \sum_{j=1}^m p_j(f_j)_*\nu,$$

i.e. it is the stationary measure for the Markov process on X generated by applying f_j with probability p_j .

Questions

dim_H(A) =?, dim_H($\Pi_*\mu$) =?, is $\Pi_*\mu$ absolutely continuous ? **Recall**:

$$\dim_{H}(\nu) = \operatorname{ess sup}_{x \sim \nu} \underline{d}(\nu, x) := \operatorname{ess sup}_{x \sim \nu} \liminf_{r \to 0} \frac{\log \nu(B(x, r))}{\log r}.$$

Natural upper bound for ergodic μ on Ω and $C^{1+\delta}$ IFS on interval:

$$\dim_{H}(\Pi_{*}\mu) \leq \min\left\{1,rac{h_{\mu}}{\chi_{\mu}}
ight\}$$

where h_{μ} - entropy of μ (w.r.t to shift on Ω) and χ_{μ} - Lyapunov exponent

$$\chi_{\mu} = -\int\limits_{\Omega} \log |f_{\omega_1}'(\Pi(\sigma\omega))| d\mu(\omega)$$

Heurestics: Assume first $f_i(X) \cap f_j(X) = \emptyset$ for $i \neq j$. Let $\nu = \prod_* \mu$ and pick a μ -typical $\omega \in \Omega$

$$\underline{d}(\nu,\Pi(\omega)) \approx \frac{\log \nu(|f_{\omega_1\dots\omega_n}(X)|)}{\log |f_{\omega_1\dots\omega_n}(X)|} = \frac{\log \mu([\omega_1,\dots,\omega_n])}{\log |f_{\omega_1\dots\omega_n}(X)|} \approx \frac{\log e^{-nh_\mu}}{\log e^{-n\chi_\mu}} = \frac{h_\mu}{\chi_\mu}$$

If there are overlaps between cylinders, then

$$\nu(|f_{\omega_1...\omega_n}(X)|) \geq \mu([\omega_1,...,\omega_n]),$$

hence we only get an upper bound on the dimension and the dimension can drop

However in many *families* of iterated function systems with overlaps, the dimension formula holds *generically*

Transversality

 $U \subset \mathbb{R}^d$ - open and bounded *parameter space*.

For each $\lambda \in U$ consider an IFS $\{f_j^{\lambda}\}_{j \in \mathcal{A}}$ on a compact interval X and the corresponding natural projection $\Pi^{\lambda} : \Omega \to X$

Definition

The family $\{f_j^{\lambda}\}_{j \in \mathcal{A}}$ satisfies the transversality condition on U if there exists C > 0 s.t. for every r > 0 and $\omega, \tau \in \Omega$ with $\omega_1 \neq \tau_1$

$$\mathcal{L}^{d}\left(\left\{\lambda\in U:|\Pi^{\lambda}(\omega)-\Pi^{\lambda}(au)|\leq r
ight\}
ight)\leq Cr$$

Theorem (Simon, Solomyak, Urbański)

Let f_j^{λ} be $C^{1+\delta}$ with $0 < \gamma_1 \leq |\frac{d}{dx}f_j^{\lambda}(x)| \leq \gamma_2 < 1$ and $\lambda \mapsto f_j^{\lambda} \in C^{1+\delta}$ continuous. Let μ be an ergodic shift-invariant prob. measure on Ω . If the tranversality holds on U, then for Lebesgue a.e. $\lambda \in U$

• dim_H(
$$\Pi^{\lambda}_{*}\mu$$
) = min{1, $\frac{h_{\mu}}{\chi_{\mu}}$ },

• $\Pi^{\lambda}_{*}\mu$ is absolutely continuous if $\frac{h_{\mu}}{\chi_{\mu}} > 1$.

Our setting

We allow the measure on the symbolic space to *also depend on the parameter*, i.e. we study a family of projected measures

 $\Pi^{\lambda}_{*}\mu_{\lambda}, \ \lambda \in U,$

where μ_{λ} are probability measures on Ω .

Under suitable regularity assumptions on the IFS and the family μ_{λ} , we obtain an analog of the previous theorem.

Main difficulties are in the absolute continuity part.

General examples / motivations

1. Stationary measures for place-dependent probabilities

Let $\{f_j^{\lambda}\}_{j \in \mathcal{A}}$ be an IFS on interval X and let $p_j : X \to (0, 1)$ be the probability functions satisfying $\sum_{j=1}^{m} p_j(x) \equiv 1$. A place-dependent stationary measure ν_{λ} on X is one satisfying

$$\int \varphi(x) d\nu_{\lambda}(x) = \int \sum_{j \in \mathcal{A}} p_j(x) \varphi(f_i^{\lambda}(x)) d\nu_{\lambda}(x)$$

for any continuous test function φ .

If p_j are Hölder continuous, then ν_{λ} is unique and $\nu_{\lambda} = \Pi_*^{\lambda} \mu_{\lambda}$, where μ_{λ} is a Gibbs measure of the potential

$$\phi^{\lambda}(\omega) = \log |\boldsymbol{p}_{\omega_1}(\boldsymbol{\Pi}^{\lambda}(\sigma\omega))|,$$

i.e. there exists $P_\lambda \in \mathbb{R}$ and $\mathcal{C}_\lambda \geq 1$ such that for every $\omega \in \Omega$ and $n \in \mathbb{N}$

$$C_{\lambda}^{-1} \leq rac{\mu([\omega|_n])}{\exp(-P_{\lambda}n + \sum\limits_{k=0}^{n-1} \phi^{\lambda}(\sigma^k \omega))} \leq C_{\lambda}.$$

Note that ϕ^{λ} (and hence μ_{λ}) depends on the parameter, even if p_j 's do not!

Typical dimension formula and absolute continuity of such place-dependent invariant measures were obtained by Balázs Bárány¹. Unfortunately, the proof contains an error (see Corrigendum on Balázs' webpage).

¹On Iterated Function Systems with place-dependent probabilities, *Proc. Amer. Math. Soc.* 143 no. 1 (2015), 419-432.

2. Equilibrium measures. Consider the pressure function

$$P_{\lambda}(t) = \lim_{n \to \infty} n^{-1} \log \sum_{\omega \in \mathcal{A}^n} \left\| rac{d}{dx} f_{\omega}^{\lambda}
ight\|^t$$

and the corresponding roots $s_{\lambda} > 0$, i.e. solutions of the Bowen's equation

$$P_{\lambda}(s_{\lambda}) = 0.$$

 s_{λ} is the "natural guess" for the dimension of the attractor (and in general an upper bound for it).

The "natural" measure ν_{λ} is the projection $\nu_{\lambda} = \Pi_*^{\lambda} \mu_{\lambda}$ of the equilibrium measure μ_{λ} , i.e. the Gibbs measure of the potential

$$\phi^{\lambda}(\omega) = s_{\lambda} \log \left| \frac{d}{dx} f^{\lambda}_{\omega_1}(\Pi^{\lambda}(\sigma \omega)) \right|$$

It satisfies

$$s_{\lambda} = rac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}}$$

Assumptions on the IFS

IFS $\{f_j^{\lambda}\}_{j \in \mathcal{A}}$ on a compact interval $X \subset \mathbb{R}$ with $\lambda \in \overline{U} \subset \mathbb{R}$, where U is an **open and bounded interval**. We assume that there exists $\delta \in (0, 1]$ such that

- (A1) the maps f_i^{λ} are $C^{2+\delta}$ -smooth on X (uniformly w.r.t. λ)
- (A2) the maps $\lambda \mapsto f_i^{\lambda}(x)$ are $C^{1+\delta}$ -smooth on U (uniformly w.r.t. x)
- (A3) the second partial derivatives $\frac{d^2}{dxd\lambda}f_j^{\lambda}(x), \frac{d^2}{d\lambda dx}f_j^{\lambda}(x)$ are δ -Hölder (uniformly, both in λ and x)
- (A4) the system $\{f_j^{\lambda}\}_{j \in \mathcal{A}}$ is uniformly hyperbolic and contractive: there exists γ_1 , $\gamma_2 > 0$ such that

$$0 < \gamma_1 \le |(rac{d}{dx} f_j^\lambda)(x)| \le \gamma_2 < 1$$

Assumptions on the measures

Let $\{\mu_{\lambda}\}_{\lambda \in \overline{U}}$ be a collection of finite Borel measures on Ω . We will consider two continuity assumptions on μ_{λ} :

(M0) for every λ_0 and every $\varepsilon > 0$ there exist $C, \xi > 0$ such that

$$\mathcal{C}^{-1} e^{-arepsilon |\omega|} \mu_{\lambda_0}([\omega]) \leq \mu_{\lambda}([\omega]) \leq \mathcal{C} e^{arepsilon |\omega|} \mu_{\lambda_0}([\omega])$$

holds for every $\omega \in \Omega^*$, $|\omega| \ge 1$ and $\lambda \in \overline{U}$ with $|\lambda - \lambda_0| < \xi$;

(M) there exists c > 0 and $\theta \in (0, 1]$ such that for all $\omega \in \Omega^*$, $|\omega| \ge 1$, and all $\lambda, \lambda' \in \overline{U}$,

$$e^{-c|\lambda-\lambda'|^{\theta}|\omega|}\mu_{\lambda'}([\omega]) \leq \mu_{\lambda}([\omega]) \leq e^{c|\lambda-\lambda'|^{\theta}|\omega|}\mu_{\lambda'}([\omega]).$$

Example: μ_{λ} - Gibbs measures of Hölder potentials ϕ^{λ}

- if $\lambda \mapsto \phi^{\lambda}$ is continuous, then (M0) holds
- if $\lambda \mapsto \phi^{\lambda}$ is Hölder, then (M) holds

Main results

From now on, we always assume that $\{f_j^{\lambda}\}_{j \in \mathcal{A}}$ is a parametrized IFS satisfying smoothness assumptions (A1) - (A4) and the transversality condition (T) on U.

Theorem 1.

Let $\{\mu_{\lambda}\}_{\lambda \in \overline{U}}$ be a collection of finite ergodic shift-invariant Borel measures on Ω satisfying (M0), such that $h_{\mu_{\lambda}}$ and $\chi_{\mu_{\lambda}}$ are continuous in λ . Then equality

$$\dim_{H}(\Pi^{\lambda}_{*}\mu_{\lambda}) = \min\left\{1, rac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}}
ight\}$$

holds for Lebesgue almost every $\lambda \in U$.

This was essentially proved by Balázs Bárány and Michał ${\sf Rams}^2$ in a more specific context

²Dimension maximizing measures for self-affine systems, *Trans. Amer. Math. Soc.* 370 (2018), 553-576.

Theorem 3.

Let $\{\mu_{\lambda}\}_{\lambda \in \overline{U}}$ be a family of Gibbs measures on Ω corresponding to a family of potentials $\phi^{\lambda} \colon \Omega \mapsto \mathbb{R}$ which are uniformly Hölder. Moreover, suppose that there exist constants $c_0 > 0$ and $\theta > 0$ such that

$$|\phi^{\lambda}(\omega) - \phi^{\lambda'}(\omega)| \leq c_{0}|\lambda - \lambda'|^{ heta}$$
 for every $\omega \in \Omega$ and $\lambda, \lambda' \in \overline{U}$. (1)

Then $\{\mu_{\lambda}\}_{\lambda\in\overline{U}}$ satisfies (M) and $\Pi_{*}^{\lambda}\mu_{\lambda}$ is absolutely continuous for Lebesgue almost every λ in the set $\{\lambda\in U: \frac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}}>1\}.$

Sketch of the proof of Theorem 1.

Tools

Correlation dimension: for a finite Borel measure μ on a metric space X and $\alpha > 0$, let

$$\mathcal{E}_{lpha}(\mu,d) = \int\limits_{X} \int\limits_{X} \frac{1}{d(x,y)^{lpha}} d\mu(x) d\mu(y)$$

be the α -energy of μ . The correlation dimension of μ is

$$\dim_{cor}(\mu, d) = \sup\{\alpha > 0 : \mathcal{E}_{\alpha}(\mu, d) < \infty\}.$$

Fact

 $\dim_{cor}(\mu, d) \leq \dim_{H}(\mu, d)$

Metric on Ω : for $\lambda \in U$ and $\omega, \tau \in \Omega$ define

$$d_{\lambda}(\omega, au) = |f_{\omega \wedge au}^{\lambda}(X)|.$$

In this metric, $\Pi^\lambda:\Omega\to\mathbb{R}$ is Lipschitz $\,$ and for an ergodic shift-invariant measure μ one has

$$\dim_{H}(\mu, d_{\lambda}) = \frac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}}$$

We are proving:

$$\dim_H(\mathsf{\Pi}^\lambda_*\mu_\lambda) = \min\{1,\dim_H(\mu_\lambda, d_\lambda)\}$$

Sketch of the proof

Goal 1.: dim_{cor}($\Pi_*^{\lambda}\mu_{\lambda}$) \geq min{1, dim_{cor}($\mu_{\lambda}, d_{\lambda}$)} for a.e. $\lambda \in U$

Classical transversality argument:

$$\dim_{cor}(\Pi^{\lambda}_{*}\mu_{\lambda_{0}}) \geq \min\{1,\dim_{cor}(\mu_{\lambda_{0}},d_{\lambda})\}$$
 for a.e. $\lambda \in U$

Enough: map $\lambda \mapsto \dim_{cor}(\Pi_*\mu_\lambda)$ is continuous, uniformly for Π in our family (and $\lambda \mapsto \dim_{cor}(\mu_\lambda, d)$ as well)

Then: for every $\lambda_0 \in U$ and $\varepsilon > 0$, there exists an open neighbourhood V of λ_0 such that for a.e. $\lambda \in V$

$$\begin{split} \dim_{cor}(\Pi_*^{\lambda}\mu_{\lambda}) &\geq \dim_{cor}(\Pi_*^{\lambda}\mu_{\lambda_0}) - \varepsilon \geq \min\{1, \dim_{cor}(\mu_{\lambda_0}, d_{\lambda})\} - \varepsilon \\ &\geq \min\{1, \dim_{cor}(\mu_{\lambda}, d_{\lambda})\} - 2\varepsilon \end{split}$$

Continuity of $\lambda \mapsto \dim_{cor}(\Pi_* \mu_\lambda)$

Enough: for λ_0 and $\varepsilon > 0$ there exists a neighbourhood V of λ_0 such that $\mathcal{E}_{\alpha}(\Pi_*\mu_{\lambda}) \lesssim \mathcal{E}_{\alpha+\varepsilon}(\Pi_*\mu_{\lambda_0})$ for $\lambda \in V$

$$\mathcal{E}_lpha(\Pi_*\mu_\lambda) = \int\limits_\Omega\int\limits_\Omega |\Pi(\omega)-\Pi(au)|^{-lpha} d\mu_\lambda(\omega) d\mu_\lambda(au)$$

$$\approx \sum_{n=0}^{\infty} 2^{\alpha n} \mu_{\lambda} \otimes \mu_{\lambda}(\{|\Pi(\omega) - \Pi(\tau)| \leq 2^{-n}\})$$

$$\approx \sum_{n=0}^{\infty} 2^{\alpha n} \mu_{\lambda} \otimes \mu_{\lambda}(\{|\Pi(\omega|_{qn} 1^{\infty}) - \Pi(\tau|_{qn} 1^{\infty})| \leq 2^{-n}\})$$

$$\lesssim \sum_{n=0}^{\infty} 2^{(lpha+arepsilon)n} \mu_{\lambda_o} \otimes \mu_{\lambda_0}(\{|\Pi(\omega|_{qn}1^{\infty}) - \Pi(\tau|_{qn}1^{\infty})| \leq 2^{-n}\}) \ pprox \mathcal{E}_{lpha+arepsilon}(\Pi_*\mu_{\lambda_0})$$

We have proved:

$$\dim_{H}(\Pi^{\lambda}_{*}\mu_{\lambda}) \geq \dim_{cor}(\Pi^{\lambda}_{*}\mu_{\lambda}) \geq \min\{1,\dim_{cor}(\mu_{\lambda},d_{\lambda})\}$$

Remains: having min $\{1, \frac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}}\}$ as the lower bound

Applying Egorov's theorem to the convergence in SMB and Birkhoff's theorems, one has

$$\dim_{cor}(\mu_{\lambda}|_{\mathcal{A}}, d_{\lambda}) \geq \frac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}} - \varepsilon$$

on a set A of almost full μ_{λ} measure. To conclude the proof, one can repeat the reasoning for the restricted measures.

Absolute continuity?

For a fixed measure, almost sure absolute continuity is proved by showing

$$\int_{U} \int_{\mathbb{R}} \underline{D}(\Pi_*^{\lambda} \mu_{\lambda_0}, x) d\Pi_*^{\lambda} \mu_{\lambda_0}(x) d\lambda$$

$$\leq \liminf_{r \to 0} \frac{1}{2r} \int_{U} \int_{\mathbb{R}} \Pi_*^{\lambda} \mu_{\lambda_0}(B(x, r)) d\Pi_*^{\lambda} \mu_{\lambda_0}(x) d\lambda < \infty.$$

Transversality is used to obtain, roughly speaking,

$$\int_{U} \int_{\mathbb{R}} \Pi_*^{\lambda} \mu_{\lambda_0}(B(x,r)) d\Pi_*^{\lambda} \mu_{\lambda_0}(x) d\lambda \leq Cr$$

Problem in our case: using the previous approach, we only obtain

$$\int\limits_V \int\limits_\mathbb{R} \Pi^\lambda_* \mu_\lambda(B(x,r)) d\Pi^\lambda_* \mu_\lambda(x) d\lambda$$

 $\lesssim r^{-\varepsilon} \int\limits_V \int\limits_\mathbb{R} \Pi^\lambda_* \mu_{\lambda_0}(B(x,r)) d\Pi^\lambda_* \mu_{\lambda_0}(x) d\lambda \leq Cr^{1-\varepsilon},$

so we do not get the finiteness of the integral.

Sobolev dimension

Sobolev energy:

$${\mathcal I}_lpha(
u):=\int\limits_{\mathbb R}|\hat
u(\xi)|^2|\xi|^{lpha-1}d\xi$$

Sobolev dimension:

$$\dim_{\mathcal{S}}(\nu) := \sup \left\{ \alpha > \mathsf{0} : \mathcal{I}_{\alpha}(\nu) < \infty \right\}$$

- if dim $_{\mathcal{S}}(
 u) > 1$, then $\hat{
 u} \in L^2(\mathbb{R})$
- hence, if dim₅(ν) > 1 then ν is absolutely continuous
- for $lpha\in(0,1)$ we have $\mathcal{I}_{lpha}(
 u)={\it c}_{lpha}\mathcal{E}_{lpha}(
 u)$
- (hence $\dim_{cor}(\nu) = \dim_{\mathcal{S}}(\nu)$ provided $0 < \dim_{\mathcal{S}}(\nu) < 1$)
- ullet unfortunately, equality of energies does not extend to $\alpha \geq 1$

Recall:

(M) there exists c > 0 and $\theta \in (0, 1]$ such that for all $\omega \in \Omega^*$, $|\omega| \ge 1$, and all $\lambda, \lambda' \in \overline{U}$,

$$e^{-c|\lambda-\lambda'|^{ heta}|\omega|}\mu_{\lambda'}([\omega]) \leq \mu_{\lambda}([\omega]) \leq e^{c|\lambda-\lambda'|^{ heta}|\omega|}\mu_{\lambda'}([\omega]).$$

Theorem 2.

Let $\{\mu_{\lambda}\}_{\lambda\in\overline{U}}$ be a collection of finite Borel measures on Ω satisfying (M). Then

$$\mathsf{dim}_{\mathcal{S}}(\mathsf{\Pi}^{\lambda}_{*}\mu_{\lambda}) \geq \mathsf{min}\left\{\mathsf{dim}_{\mathit{cor}}(\mu_{\lambda}, \mathit{d}_{\lambda}), 1 + \mathsf{min}\{\delta, \theta\}\right\}$$

holds for Lebesgue almost every $\lambda \in U$. Consequently, $\Pi_*^{\lambda} \mu_{\lambda}$ is absolutely continuous with a density in L^2 for Lebesgue almost every λ in the set $\{\lambda \in U : \dim_{cor}(\mu_{\lambda}, d_{\lambda}) > 1\}$.

A fixed measure version of this theorem follows from results of Peres and Schlag

Instead of the usual energy integrals, one can rely on the decomposition obtained from the **Littlewood-Paley function**:

 $\psi:\mathbb{R}\rightarrow\mathbb{R}$ of Schwarz class, with $\widehat{\psi}\geq \mathbf{0}$ and

$$\operatorname{supp}(\widehat{\psi}) \subset \{\xi: \ 1 \leq |\xi| \leq 4\}, \qquad \sum_{j \in \mathbb{Z}} \widehat{\psi}(2^{-j}\xi) = 1 \ \text{ for all } \xi \neq 0.$$

$$\mathcal{I}_{\alpha}(\nu) \asymp \sum_{n=0}^{\infty} 2^{\alpha n} \int_{\Omega} \int_{\Omega} \psi \left(2^{n} (\Pi(\omega_{1}) - \Pi(\omega_{2})) \right) d\mu(\omega_{1}) d\mu(\omega_{2})$$

Difficulties: ψ is not non-negative, so using bounds on the measures to change $\lambda \to \lambda_0$ requires extra care

 $\lambda \mapsto \dim_{\mathcal{S}}(\Pi_* \mu_\lambda)$ is no longer continuous

Our strategy:

$$\int\limits_V \mathcal{I}_{lpha}(
u_{\lambda}) d\lambda$$

$$\approx \sum_{n=0}^{\infty} 2^{\alpha n} \int_{\mathbb{R}} \int_{\Omega} \int_{\Omega} \psi \left(2^{n} (\Pi^{\lambda}(\omega_{1}) - \Pi^{\lambda}(\omega_{2})) \right) d\mu_{\lambda}(\omega_{1}) d\mu_{\lambda}(\omega_{2}) d\lambda$$

$$\approx \sum_{n=0}^{\infty} 2^{\alpha n} \int_{\mathbb{R}} \int_{\Omega} \int_{\Omega} \psi \left(2^{n} (\Pi^{\lambda}(\omega_{1}) - \Pi^{\lambda}(\omega_{2})) \right) e_{n}(\omega_{1}, \omega_{2}, \lambda) d\mu_{\lambda_{0}}(\omega_{1}) d\mu_{\lambda_{0}}(\omega_{2}) d\lambda$$

We extended the proof of Peres and Schlag to apply transversality for the modified kernel $\psi(2^n \cdot)e_n(\cdot)$.

This requires certain regularity of $e_n(\cdot)$, coming from condition (M).

Theorem 3. (almost sure absolute continuity for projections of Gibbs measures in the region $\{\lambda \in U : \frac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}} > 1\}$)

follows from

Theorem 2. (almost sure absolute continuity in the region $\{\lambda \in U : \dim_{cor}(\mu_{\lambda}, d_{\lambda}) > 1\}$)

by finding $A \subset \Omega$ such that restrictions $\mu_{\lambda}|_{A}$ satisfy both $\dim_{cor}(\mu_{\lambda}|_{A}, d_{\lambda}) > \frac{h_{\mu_{\lambda}}}{\chi_{\mu_{\lambda}}} - \varepsilon$ and property (M)

We construct it using the Large Deviations Principle for Gibbs measures.

Applications

- absolute continuity for place-dependent Bernoulli convolutions (⇒ a.c. of SRB measures for certain modified fat baker's maps)
- a.c. of Blackwell measures for binary channels (transversality obtained by Bárány and Kolossváry)
- equilibrium measures for IFS satisfying (A1) (A4) and transversality
- in particular: equilibrium measure for non-homogenous self-similar IFS

$$\{x \mapsto \lambda_1 x, x \mapsto \lambda_2 x + 1\}$$

is absolutely continuous for a.e. $(\lambda_1, \lambda_2) \in (0, 1)^2$ such that $\lambda_1 + \lambda_2 > 1$ and max $\{\lambda_1, \lambda_2\} \leq 0.668$ (trasnversality by Ngai-Wang and Neunhäuserer)

• some hyperbolic random continued fractions:

$$\left\{f_{1}^{\alpha}, f_{2}^{\beta}\right\} = \left\{\frac{x+\alpha}{x+\alpha+1}, \frac{x+\beta}{x+\beta+1}\right\}$$

for $\alpha \in (0, 10^{-4}]$ and $\beta = \sqrt{2} - 1$, the equilibrium measure $\nu_{\alpha,\beta+\lambda}$ is absolutely continuous for a.e. $\lambda \in (0, 0.077)$

Thank you for your attention!