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Diophantine Approximation

Y%
et

B
)

Fack IF e R, and ?IHN/ Jpelsth

)x—lﬁ/‘(%.

(l'ﬁcrbv\ (DI‘/{CL\M; lgljl) fv a«ﬂ xe P\, 3 fzxﬁn.’“a many QEN sk

41 4)

fiostmg pe T

Demi Allen (University of Bristol) Dyadic Approximation in the Cantor Set 26th May 2021 2/12













































































































































































































































































































































































































































































































































Khintchine's Theorem

Given ¢ : N — [0, 00), we define the y-well approximable points as

p| _ v¥(q)

A() = {X €[0,1]: |x — q’ < 0 for infinitely many (p, q) € Z x N}.
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Khintchine's Theorem

Given ¢ : N — [0, 00), we define the y-well approximable points as

X — Z’ < ¢(qq) for infinitely many (p, q) € Z x N} .

A() = {x €[0,1]:
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Khintchine's Theorem

Given ¢ : N — [0, 00), we define the y-well approximable points as

A(Y) = {x €[0,1] : ’x — Z‘ < Tﬂ(qq) for infinitely many (p, q) € Z x N}.
0 112 1
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Khintchine's Theorem

Given ¢ : N — [0, 00), we define the v-well approximable points as

A(Y) = {x €[0,1] : |x — p‘ < Tﬂ(qq) for infinitely many (p, q) € Z x N}.
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Khintchine's Theorem

Given ¢ : N — [0, 00), we define the y-well approximable points as

A(Y) = {X €[0,1]: ’X — Z‘ < ¢qu) for infinitely many (p, q) € Z x N},
0 1/3 12 2/3 1
w(1n w3)3  w(2)2

Khintchine's Theorem (1924)

For any monotonic approximating function ¢ : N — [0, c0),

LW Y5 wle)=oo.
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Khintchine's Theorem

Given ¢ : N — [0, 00), we define the v-well approximable points as

A(Y) = {X €[0,1]: ‘x - S < ¢qu) for infinitely many (p, q) € Z x N} )
0 13 1/2 2/3 1
w(1)1 w(3)3 w(2)2

Khintchine's Theorem (1924)

For any monotonic approximating function ¢ : N — [0, c0),

0 if Y3, ¥(9) < oo,

LM@”:{lw T3 vle) = oo

If X C R, what can we say about X N A()?
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Diophantine Approximation on Fractals: Mahler's Question

Question (Mahler, 1984)

How close can irrational elements of Cantor’s set be approximated
(i) by rational numbers in Cantor's set, and
(ii) by rational numbers not in Cantor’s set?

w=0D
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Diophantine Approximation on Fractals: Mahler's Question

Question (Mahler, 1984)

How close can irrational elements of Cantor’s set be approximated
(i) by rational numbers in Cantor’s set, and
(ii) by rational numbers not in Cantor’s set?

Many authors, many works: Weiss (2001), Kleinbock-Lindenstrauss—Weiss
(2004), Kristensen (2006), Levesley—Salp—Velani (2007), Bugeaud (2008),
Bugeaud-Durand (2016), Fishman + various collaborators (2011-2018),
Khalil-Liithi (2021+), Yu (2021+), ...
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Triadic Approximation in the Middle-Third Cantor Set

@ K — middle-third Cantor set.
o v :=dimy K = 142
@ u — natural probability measure on K (i.e. u:=H"|k).

o Note p is y-Ahlfors regular; i.e. p(B(x,r)) < rY for x € K and r > 0.
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Triadic Approximation in the Middle-Third Cantor Set

@ K — middle-third Cantor set.

o y:=dimyK = :ggg

@ . — natural probability measure on K (i.e. u:=H"|k).

o Note p is y-Ahlfors regular; i.e. p(B(x,r)) < rY for x € K and r > 0.
e B:={3":n=0,1,2,...}.

e Given ¢ : N — [0,00), let

Ap(®) = {XG [0,1] : ‘x’;‘ <

"l/’(qQ) for infinitely many (p, q) € Z x B} .
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Triadic Approximation in the Middle-Third Cantor Set

K — middle-third Cantor set.

v :=dimy K = :ggg

i — natural probability measure on K (i.e. pu:=H"|k).

Note  is y-Ahlfors regular; i.e. pu(B(x,r)) < r? for x € K and r > 0.
B:={3":n=0,1,2,...}.

Given ¢ : N — [0, 00), let

Ag(¢) == {X €1[0,1]: ‘x - ‘ < 1/’((;7) for infinitely many (p, q) € Z x B} .

Theorem (Levesley — Salp — Velani, 2007)

For ¢ : N — [0, 00),
ALK

if > (3" 0,
u(As($)) = Er v(s

1 i T, 9377 = co.
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Dyadic Approximation in the Middle-Third Cantor Set

What about dyadic approximation in the Cantor set, i.e. what if
B={2":n=0,1,2,...}7
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Dyadic Approximation in the Middle-Third Cantor Set

What about dyadic approximation in the Cantor set, i.e. what if
B={2":n=0,1,2,...}7

Let B:={2":n=0,1,2,...} and, given ¢ : N — [0, c0), consider

¥(q)
q

Ap(y) = {X €[0,1]: ‘X - 'Z' < for infinitely many (p, q) € Z x B} .
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Dyadic Approximation in the Middle-Third Cantor Set

What about dyadic approximation in the Cantor set, i.e. what if
B={2":n=0,1,2,...}7

Let B:={2":n=0,1,2,...} and, given ¥ : N — [0, c0), consider

Ap(y) = {X €[0,1]: ‘X - 'Z’ < ¢(qq) for infinitely many (p, q) € Z x B} .

Conjecture (Velani)

For ¢y : N — [0,00), if B={2":n=0,1,2,...},

it Y0, (27 < oo,
1 if >, 9(2") =00

w(As()) =
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Heuristics

Conjecture (Velani)
For ¢ : N — [0,00), if B={2":n=0,1,2,...},

if > 2 9(2") <o
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Heuristics
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Our Results

Proposition (Benchmark Convergence Result, A. — Chow — Yu)

For: N = [0,00), if ¥ _(2")7 < oo, then u(Ag(t))) = 0.

n=1
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Our Results

Proposition (Benchmark Convergence Result, A. — Chow — Yu)

For: N = [0,00), if ¥ _(2")7 < oo, then u(Ag(t))) = 0.

n=1

Theorem (Main Convergence Theorem, A. — Chow — Yu)

o0
S B(27)7 +9(27)) < oo, then

() = 0.
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Our Results

Proposition (Benchmark Convergence Result, A. — Chow — Yu)

For: N = [0,00), if ¥ _(2")7 < oo, then u(Ag(t))) = 0.

n=1

Theorem (Main Convergence Theorem, A. — Chow — Yu)

H_—Z(2—Iogn/(loglogn-IogIogIogn)dj(zn)'y —|—’QZJ(2H)) < oo, then

w(As()) = 0. )

Theorem (Main Divergence Theorem, A. — Chow — Yu)

For 1(2") = 2~ 2108/ 6 1oEWE N, we have u(Ap(v)) = L.
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Our Results

Proposition (Benchmark Convergence Result, A. — Chow — Yu)

For: N = [0,00), if ¥ _(2")7 < oo, then u(Ag(t))) = 0.

n=1

Theorem (Main Convergence Theorem, A. — Chow — Yu)

H_—Z(2—Iogn/(loglogn-IogIogIogn)dj(zn)'y —|—’QZJ(2H)) < oo, then

() = 0.

Theorem (Main Divergence Theorem, A. — Chow — Yu)

For 1(2") = 2~ 2108/ 6 1oEWE N, we have u(Ap(v)) = L.

2%m
Main ideas: Fourier Analysis and bounds on digit changes.
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Digit Changes in Base 2 and Base 3

For n € N, let D>(n) denote the number of digit changes in the base 2

expansion of n. Likewise, let D3(n) denote the number of digit changes in
the base 3 expansion of n.

n=20

N N

bae 2. 10100 0,(20)=3
bwe 37 207 0y 60)=2.
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Digit Changes in Base 2 and Base 3

For n € N, let D>(n) denote the number of digit changes in the base 2
expansion of n. Likewise, let D3(n) denote the number of digit changes in
the base 3 expansion of n.

Lemma (Stewart (1980), Bugeaud — Cipu — Mignotte (2013))

For sufficiently large n € N, we have

loglog n
Da(n) + Ds(n) > ——2 81
log log log n

where the implicit constant is absolute.

Demi Allen (University of Bristol) Dyadic Approximation in the Cantor Set 26th May 2021 10 / 12



Digit Changes in Base 2 and Base 3

For n € N, let D>(n) denote the number of digit changes in the base 2
expansion of n. Likewise, let D3(n) denote the number of digit changes in
the base 3 expansion of n.

Lemma (Stewart (1980), Bugeaud — Cipu — Mignotte (2013))

For sufficiently large n € N, we have

loglog n
Da(n) + Ds(n) > ——2 81
log log log n

where the implicit constant is absolute.

If we could improve the bound in the above lemma, we could strengthen
our earlier results.
Qathan g Pya) 4 Ogla) 2 laor\ e Vorge gl n’

Ldieln sragrdfravd h doa Dy )+ D) << lyin .
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Digit Changes in Base 2 and Base 3

For n € N, let D>(n) denote the number of digit changes in the base 2
expansion of n. Likewise, let D3(n) denote the number of digit changes in
the base 3 expansion of n.

Lemma (Stewart (1980), Bugeaud — Cipu — Mignotte (2013))

For sufficiently large n € N, we have

loglog n
Da(n) + Ds(n) > ——2 81
log log log n

where the implicit constant is absolute.

If we could improve the bound in the above lemma, we could strengthen
our earlier results. In particular, a bound of D>(n) + D3(n) > loglogn
would imply the convergence part of Velani's Conjecture.
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Conditional Convergence Results

Theorem (A. — Chow — Yu)

Assuming the Lang—Waldschmidt Conjecture, for sufficiently large y € N,
we have

D>(y) + Ds(y) > loglogy.
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Conditional Convergence Results

Theorem (A. — Chow — Yu)

Assuming the Lang—Waldschmidt Conjecture, for sufficiently large y € N,
we have

D>(y) + Ds(y) > loglogy.

| A\,

Corollary

Conditional on the Lang—Waldschmidt Conjecture, the convergence part of
Velani's Conjecture is true. Namely; if

> (27 < oo,
n=1

then u(As(1)) = 0.
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Conditional Divergence Results

Theorem (A. — Chow — Yu)

Suppose Da(y) + D3(y) > h(y) for all y > 1, where h : N — (0, 00) is an
increasing function.

@ Ifh(y) > logy, then for )(2") = L e have w(Ag(¥)) = 1.

n

@ If h(y) > loglogy, then for )(2") = Tlmgn we have p(Ag(¢)) = 1.
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Conditional Divergence Results

Theorem (A. — Chow — Yu)

Suppose Da(y) + D3(y) > h(y) for all y > 1, where h : N — (0, 00) is an
increasing function.

@ Ifh(y) > logy, then for )(2") = L e have w(Ag(¥)) = 1.

n

@ If h(y) > loglogy, then for )(2") = Tlmgn we have p(Ag(¢)) = 1.

Thank you for your attention!
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