Dyadic Approximation in the Middle-Third Cantor Set

Demi Allen

University of Bristol

26th May 2021, One-Day Ergodic Theory Meeting (online)

Diophantine Approximation

Fact If $x \in \mathbb{R}$, and $q \in \mathbb{N}, \exists p \in \mathbb{L}$ s.I.

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q} .
$$

Theorem (Dischet, 1842) For any $x \in R, 子$ inhintly many $q \in \mathbb{N}$ s.t.

$$
\left|x-\frac{p}{q}\right|<\left(\frac{1}{q^{2}}\right)
$$

for some $p \in \mathbb{Z}$.

Khintchine's Theorem

Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, we define the ψ-well approximable points as $\mathcal{A}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q}\right.$ for infinitely many $\left.(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}$.

Khintchine's Theorem

Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, we define the ψ-well approximable points as
$\mathcal{A}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q}\right.$ for infinitely many $\left.(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}$.

Khintchine's Theorem

Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, we define the ψ-well approximable points as
$\mathcal{A}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q}\right.$ for infinitely many $\left.(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}$.

Khintchine's Theorem

Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, we define the ψ-well approximable points as

$$
\mathcal{A}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q} \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

Khintchine's Theorem

Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, we define the ψ-well approximable points as

$$
\mathcal{A}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q} \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\} .
$$

Khintchine's Theorem

Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, we define the ψ-well approximable points as
$\mathcal{A}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q}\right.$ for infinitely many $\left.(p, q) \in \mathbb{Z} \times \mathbb{N}\right\}$.

Khintchine's Theorem (1924)

For any monotonic approximating function $\psi: \mathbb{N} \rightarrow[0, \infty)$,

$$
\mathcal{L}(\mathcal{A}(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} \psi(q)<\infty, \\
1 & \text { if } & \sum_{q=1}^{\infty} \psi(q)=\infty .
\end{array}\right.
$$

Khintchine's Theorem

Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, we define the ψ-well approximable points as

$$
\begin{gathered}
\mathcal{A}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q} \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathbb{N}\right\} . \\
\underset{\psi(1) / 1}{0} \underset{\Psi(3) / 3}{\sim} \underbrace{2 / 3}_{\Psi(2) / 2}
\end{gathered}
$$

Khintchine's Theorem (1924)

For any monotonic approximating function $\psi: \mathbb{N} \rightarrow[0, \infty)$,

$$
\mathcal{L}(\mathcal{A}(\psi))=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{q=1}^{\infty} \psi(q)<\infty \\
1 & \text { if } & \sum_{q=1}^{\infty} \psi(q)=\infty
\end{array}\right.
$$

Question

If $X \subset \mathbb{R}$, what can we say about $X \cap \mathcal{A}(\psi)$?

Diophantine Approximation on Fractals: Mahler's Question

Question (Mahler, 1984)

How close can irrational elements of Cantor's set be approximated (i) by rational numbers in Cantor's set, and (ii) by rational numbers not in Cantor's set?

Diophantine Approximation on Fractals: Mahler's Question

Question (Mahler, 1984)

How close can irrational elements of Cantor's set be approximated (i) by rational numbers in Cantor's set, and
(ii) by rational numbers not in Cantor's set?

Many authors, many works: Weiss (2001), Kleinbock-Lindenstrauss-Weiss (2004), Kristensen (2006), Levesley-Salp-Velani (2007), Bugeaud (2008), Bugeaud-Durand (2016), Fishman + various collaborators (2011-2018), Khalil-Lüthi (2021+), Yu (2021+), ...

Triadic Approximation in the Middle-Third Cantor Set

- K - middle-third Cantor set.
- $\gamma:=\operatorname{dim}_{H} K=\frac{\log (2)}{\log (3)}$.
- μ - natural probability measure on K (i.e. $\mu:=\left.\mathcal{H}^{\gamma}\right|_{K}$).
- Note μ is γ-Ahlfors regular; i.e. $\mu(B(x, r)) \asymp r^{\gamma}$ for $x \in K$ and $r>0$.

Triadic Approximation in the Middle-Third Cantor Set

- K - middle-third Cantor set.
- $\gamma:=\operatorname{dim}_{H} K=\frac{\log 2}{\log 3}$.
- μ - natural probability measure on K (i.e. $\mu:=\left.\mathcal{H}^{\gamma}\right|_{K}$).
- Note μ is γ-Ahlfors regular; i.e. $\mu(B(x, r)) \asymp r^{\gamma}$ for $x \in K$ and $r>0$.
- $\mathcal{B}:=\left\{3^{n}: n=0,1,2, \ldots\right\}$.
- Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, let

$$
\mathcal{A}_{\mathcal{B}}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q} \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathcal{B}\right\}
$$

Triadic Approximation in the Middle-Third Cantor Set

- K - middle-third Cantor set.
- $\gamma:=\operatorname{dim}_{H} K=\frac{\log 2}{\log 3}$.
- μ - natural probability measure on K (i.e. $\mu:=\left.\mathcal{H}^{\gamma}\right|_{K}$).
- Note μ is γ-Ahlfors regular; i.e. $\mu(B(x, r)) \asymp r^{\gamma}$ for $x \in K$ and $r>0$.
- $\mathcal{B}:=\left\{3^{n}: n=0,1,2, \ldots\right\}$.
- Given $\psi: \mathbb{N} \rightarrow[0, \infty)$, let

$$
\mathcal{A}_{\mathcal{B}}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q} \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathcal{B}\right\} .
$$

Theorem (Levesley - Salp - Velani, 2007)

For $\psi: \mathbb{N} \rightarrow[0, \infty)$,

$$
\underline{力_{\mathcal{B}}(\psi) \cap K} \underset{\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)}{\underline{\mu}}=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{n=1}^{\infty} \psi\left(3^{n}\right) \mathcal{O}<\infty \\
1 & \text { if } & \sum_{n=1}^{\infty} \psi\left(3^{n}\right)^{\gamma}=\infty
\end{array}\right.
$$

Dyadic Approximation in the Middle-Third Cantor Set

Question

What about dyadic approximation in the Cantor set, i.e. what if $\mathcal{B}=\left\{2^{n}: n=0,1,2, \ldots\right\}$?

Dyadic Approximation in the Middle-Third Cantor Set

Question

What about dyadic approximation in the Cantor set, i.e. what if $\mathcal{B}=\left\{2^{n}: n=0,1,2, \ldots\right\}$?

Let $\mathcal{B}:=\left\{2^{n}: n=0,1,2, \ldots\right\}$ and, given $\psi: \mathbb{N} \rightarrow[0, \infty)$, consider

$$
\mathcal{A}_{\mathcal{B}}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q} \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathcal{B}\right\}
$$

Dyadic Approximation in the Middle-Third Cantor Set

Question

What about dyadic approximation in the Cantor set, i.e. what if $\mathcal{B}=\left\{2^{n}: n=0,1,2, \ldots\right\}$?

Let $\mathcal{B}:=\left\{2^{n}: n=0,1,2, \ldots\right\}$ and, given $\psi: \mathbb{N} \rightarrow[0, \infty)$, consider

$$
\mathcal{A}_{\mathcal{B}}(\psi):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{\psi(q)}{q} \text { for infinitely many }(p, q) \in \mathbb{Z} \times \mathcal{B}\right\}
$$

Conjecture (Velani)

For $\psi: \mathbb{N} \rightarrow[0, \infty)$, if $\mathcal{B}=\left\{2^{n}: n=0,1,2, \ldots\right\}$,

$$
\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{n=1}^{\infty} \psi\left(2^{n}\right)<\infty \\
1 & \text { if } & \sum_{n=1}^{\infty} \psi\left(2^{n}\right)=\infty
\end{array}\right.
$$

Heuristics
Conjecture (Velani)
For $\psi: \mathbb{N} \rightarrow[0, \infty)$, if $\mathcal{B}=\left\{2^{n}: n=0,1,2, \ldots\right\}$,

$$
\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=\left\{\begin{array}{lll}
0 & \text { if } & \sum_{n=1}^{\infty} \psi\left(2^{n}\right)<\infty \\
1 & \text { if } & \sum_{n=1}^{\infty} \psi\left(2^{n}\right)=\infty
\end{array}\right.
$$

- Let $A_{n}=\bigcup_{a=0}^{2^{n}} B\left(\frac{a}{2^{n}}, \frac{\psi\left(2^{n}\right)}{2^{n}}\right)$ for $n \in \mathbb{N}$.
- Note that $b_{B}(\psi)=\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{j=0}^{\infty} \bigcup_{n=j}^{\infty} A_{n} . \quad \sum \mu\left(A_{n}\right)<\infty$
- Fix n and suppose that $\frac{4\left(2^{n}\right)}{2^{n}} \approx 3^{-N}$.
- Suppose that the dyadic rationals are "uniformly distibibted" in $[0,1]$.

Heuristics

- We expect to find $\approx \frac{2^{N}}{3^{N}} \times 2^{n}$ dyadic rationals with deroninater 2^{n} "near" K_{N}.

$$
\begin{aligned}
\Rightarrow \mu\left(A_{n}\right) & \ll \frac{2^{N}}{3^{N}} \times 2^{n} \times\left(\frac{\psi\left(2^{n}\right)}{2^{n}}\right)^{\gamma} \quad \frac{\psi\left(2^{n}\right)}{2^{n}} \approx 3^{-N} \\
& \approx 2^{N} \times\left(\frac{\psi\left(2^{n}\right)}{2^{n}}\right) \times 2^{n} \times\left(3^{-N}\right)^{\gamma} \\
& =\psi\left(2^{n}\right) .
\end{aligned}
$$

- By the First Bod-Cantelti.Lemma, if $\sum_{n=0}^{\infty} \psi\left(2^{n}\right)<\infty$, then $\mu\left(b_{B}(t)\right)=0$.

Our Results

Proposition (Benchmark Convergence Result, A. - Chow - Yu)

For $\psi: \mathbb{N} \rightarrow[0, \infty)$, if $\sum_{n=1}^{\infty} \psi\left(2^{n}\right)^{\gamma}<\infty$, then $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0$.

Our Results

Proposition (Benchmark Convergence Result, A. - Chow - Yu)

For $\psi: \mathbb{N} \rightarrow[0, \infty)$, if $\sum_{n=1}^{\infty} \psi\left(2^{n}\right)^{\gamma}<\infty$, then $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0$.

$$
\begin{aligned}
& \text { Theorem (Main Convergence Theorem, A. - Chow - Yu) } \\
& \text { If } \sum_{n=1}^{\infty}\left(2-\sqrt{\log n /(\log \log n \cdot \log \log \log n} \psi\left(2^{n}\right)^{\gamma}+\psi\left(2^{n}\right)\right)<\infty \text {, then } \\
& \mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0 \text {. }
\end{aligned}
$$

Our Results

Proposition (Benchmark Convergence Result, A. - Chow - Yu)

For $\psi: \mathbb{N} \rightarrow[0, \infty)$, if $\sum_{n=1}^{\infty} \psi\left(2^{n}\right)^{\gamma}<\infty$, then $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0$.

Theorem (Main Convergence Theorem, A. - Chow - Yu)

If $\sum^{\infty}\left(2^{-\log n n(\log \log n \cdot \log \log \log n)} \psi\left(2^{n}\right)^{\gamma}+\psi\left(2^{n}\right)\right)<\infty$, then $n=1$
$\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0$.

Theorem (Main Divergence Theorem, A. - Chow - Yu)

For $\psi\left(2^{n}\right)=2^{-\log \log n / \log \log \log n}$, we have $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=1$.

Our Results

Proposition (Benchmark Convergence Result, A. - Chow - Yu)

For $\psi: \mathbb{N} \rightarrow[0, \infty)$, if $\sum_{n=1}^{\infty} \psi\left(2^{n}\right)^{\gamma}<\infty$, then $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0$.

Theorem (Main Convergence Theorem, A. - Chow - Yu)

If $\sum^{\infty}\left(2^{-\log n /(\log \log n \cdot \log \log \log n)} \psi\left(2^{n}\right)^{\gamma}+\psi\left(2^{n}\right)\right)<\infty$, then $n=1$
$\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0$.
Theorem (Main Divergence Theorem, A. - Chow - Yu)
For $\psi\left(2^{n}\right)=2^{-\log \log n / \log \log \log n}$, we have $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=1$.
Main ideas: Fourier Analysis and bounds on digit changes $2^{n} \mathrm{~m}$
Main ideas: Fourier Analysis and bounds on digit changes.

Digit Changes in Base 2 and Base 3

For $n \in \mathbb{N}$, let $D_{2}(n)$ denote the number of digit changes in the base 2 expansion of n. Likewise, let $D_{3}(n)$ denote the number of digit changes in the base 3 expansion of n.

$$
\begin{array}{ll}
n=20 & \\
\text { base } 2: \hat{10} 100 & D_{2}(20)=3 \\
\text { base 3: 20 } & D_{3}(20)=2
\end{array}
$$

Digit Changes in Base 2 and Base 3

For $n \in \mathbb{N}$, let $D_{2}(n)$ denote the number of digit changes in the base 2 expansion of n. Likewise, let $D_{3}(n)$ denote the number of digit changes in the base 3 expansion of n.

Lemma (Stewart (1980), Bugeaud - Cipu - Mignotte (2013))

For sufficiently large $n \in \mathbb{N}$, we have

$$
D_{2}(n)+D_{3}(n) \gg \frac{\log \log n}{\log \log \log n}
$$

where the implicit constant is absolute.

Digit Changes in Base 2 and Base 3

For $n \in \mathbb{N}$, let $D_{2}(n)$ denote the number of digit changes in the base 2 expansion of n. Likewise, let $D_{3}(n)$ denote the number of digit changes in the base 3 expansion of n.

Lemma (Stewart (1980), Bugeaud - Cipu - Mignotte (2013))

For sufficiently large $n \in \mathbb{N}$, we have

$$
D_{2}(n)+D_{3}(n) \gg \frac{\log \log n}{\log \log \log n}
$$

where the implicit constant is absolute.

If we could improve the bound in the above lemma, we could strengthen our earlier results.
Queshan is $D_{2}(n)+D_{3}(n) \asymp \log n$ for loge hough n ?
Relatively straightforward to show $D_{2}(n)+D_{3}(n) \ll \lg n$.

Digit Changes in Base 2 and Base 3

For $n \in \mathbb{N}$, let $D_{2}(n)$ denote the number of digit changes in the base 2 expansion of n. Likewise, let $D_{3}(n)$ denote the number of digit changes in the base 3 expansion of n.

Lemma (Stewart (1980), Bugeaud - Cipu - Mignotte (2013))

For sufficiently large $n \in \mathbb{N}$, we have

$$
D_{2}(n)+D_{3}(n) \gg \frac{\log \log n}{\log \log \log n},
$$

where the implicit constant is absolute.

If we could improve the bound in the above lemma, we could strengthen our earlier results. In particular, a bound of $D_{2}(n)+D_{3}(n) \gg \log \log n$ would imply the convergence part of Velani's Conjecture.

Conditional Convergence Results

Theorem (A. - Chow - Yu)

Assuming the Lang-Waldschmidt Conjecture, for sufficiently large $y \in \mathbb{N}$, we have

$$
D_{2}(y)+D_{3}(y) \gg \log \log y
$$

Conditional Convergence Results

Theorem (A. - Chow - Yu)

Assuming the Lang-Waldschmidt Conjecture, for sufficiently large $y \in \mathbb{N}$, we have

$$
D_{2}(y)+D_{3}(y) \gg \log \log y
$$

Corollary

Conditional on the Lang-Waldschmidt Conjecture, the convergence part of Velani's Conjecture is true. Namely; if

$$
\sum_{n=1}^{\infty} \psi\left(2^{n}\right)<\infty
$$

then $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=0$.

Conditional Divergence Results

Theorem (A. - Chow - Yu)
Suppose $D_{2}(y)+D_{3}(y) \geq h(y)$ for all $y \geq 1$, where $h: \mathbb{N} \rightarrow(0, \infty)$ is an increasing function.
(1) If $h(y) \gg \log y$, then for $\psi\left(2^{n}\right)=\frac{1}{n}$ we have $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=1$.
(2. If $h(y) \gg \log \log y$, then for $\psi\left(2^{n}\right)=\frac{1}{1+\log n}$ we have $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=1$.

Conditional Divergence Results

Theorem (A. - Chow - Yu)
Suppose $D_{2}(y)+D_{3}(y) \geq h(y)$ for all $y \geq 1$, where $h: \mathbb{N} \rightarrow(0, \infty)$ is an increasing function.
(1) If $h(y) \gg \log y$, then for $\psi\left(2^{n}\right)=\frac{1}{n}$ we have $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=1$.
(2. If $h(y) \gg \log \log y$, then for $\psi\left(2^{n}\right)=\frac{1}{1+\log n}$ we have $\mu\left(\mathcal{A}_{\mathcal{B}}(\psi)\right)=1$.

Thank you for your attention!

