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Cut and project sets



Cut and project sets

Y
E = 〈(1, α)〉

Fπ

W
S

π

Fρ

Y = YW = π(S ∩ Zk) ⊂ E

I subspace E
totally irrational

I Fπ transversal to
E

I Fρ = Rk−d

I π : Rk → E
projection along
Fπ

I W ⊂ F window

I S = E +W strip

I E = graph of a
linear
α : Rd → Rk−d



Repetition of patterns
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Patterns in Y

Patch of size r around a point y ∈ Y ?



rΩ + ỹ

P(y , r) = {y ′ ∈ Y | ρ(ỹ ′ − ỹ) ∈ rΩ}



Repetition of patterns

I P(y , r) equivalent to P(y ′, r) if P(y , r) = P(y ′, r) + y − y ′

I [P(y , r)] = P(y , r)

Some previous work

I rd ≤ number of different patches of size r ≤ rd(k−d)(Julien 2010)

I linear repetition of patches: Lagarias and Pleasants 2003, Besbes,
Boshernitzan and Lenz 2013



Repetition of patterns

I P(y , r) equivalent to P(y ′, r) if P(y , r) = P(y ′, r) + y − y ′

I [P(y , r)] = P(y , r)

Some previous work

I rd ≤ number of different patches of size r ≤ rd(k−d)(Julien 2010)

I linear repetition of patches: Lagarias and Pleasants 2003, Besbes,
Boshernitzan and Lenz 2013



We answer the questions:

I How long do we have to wait to see all patches of size r?

I How many different frequencies do patches of size r have?

... and find an equivalent form of a famous open problem in Diophantine
approximation.
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An observation
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An observation

Lemma (Haynes, K., Sadun, Walton)

The action of the points ρ−1(rΩ) ∩ Zk by n.x = ρ∗(n) + x, on the
boundary of W partitions the window W. Connected components in this
partition correspond exactly to patches of size r in Y , that is, for every
P = P(y , r) there is a connected component Q such that P(y ′, r) ∈ P iff
ρ∗(ỹ), ρ∗(ỹ ′) ∈ Q.

Similar observations: Berthe and Vuillon 2000, Julien 2010
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(n, nα)

E = 〈(1, α)〉

(n, dnαe)

−nα mod 1

n ∈ ρ−1(RΩ + y) ∩ Z

(α(n) mod 1)n∈ρ−1(RΩ+y)∩Zd visits every connected component
⇐⇒

P(y ,R) contains all r -patches for all y
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Our results



Some more notation

I frequency

ξP(y ,r) = lim
R→∞

#{y ′ ∈ Y | |y ′| ≤ R, y ′ equivalent to y}
#{y ′ ∈ Y | |y ′| ≤ R}

I frequency spectrum

ξ(r) = distinct values of ξP

I we call R : R+ → R+ a repetitivity function if any patch of size
R(r) contains all patches of size r



Our results: Frequencies of patches

Theorem (Haynes, K., Walton, Sadun 2014)

Assume W is a parallelotope with vertices in Zk−d ∩ F , and Y aperiodic
and totally irrational. Then

I for a full dimensional set of choices for E , there is C > 0 such that
#ξ(r) ≤ C for all r > 0,

I for a full measure set of choices for E , for any ε > 0 and all large r ,
#ξ(r) ≤ (log r)(1+ε)(d+1)(k−d)

I for a positive dimensional set of choices for E , we can choose Ω to be
a polytope and find ε > 0 in such a way that

lim sup
r→∞

#ξ(r)

r ε
=∞.



Our results: Repetitivity

Theorem (Haynes, K., Walton 2015)

Let Y as above be defined by the linear form α = (α1, . . . , αk−d). When
W is the unit square, Y has a linear repetitivity function if and only if the
sum of the ranks of the kernels of αi mod 1 is d(k − d − 1) and each αi

is relatively badly approximable.

Theorem (Haynes, Julien, K., Walton 2016)

For ε > 0, for almost all choices of E , the growth rate of the repetitivity
function has the upper bound rk−d(log r)(2k−1)/d−1+ε. In the case
k − d = 1, it also has a lower bound r(log r)1/d .



Quasicrystals and the Littlewood conjecture

Theorem (Haynes, K., Walton 2015)

The Littlewood conjecture holds if and only if super perfectly ordered
cut and project sets do not exist.



Thank you!


