Horocycle flow orbits of translation surfaces

Kathryn Lindsey

University of Chicago

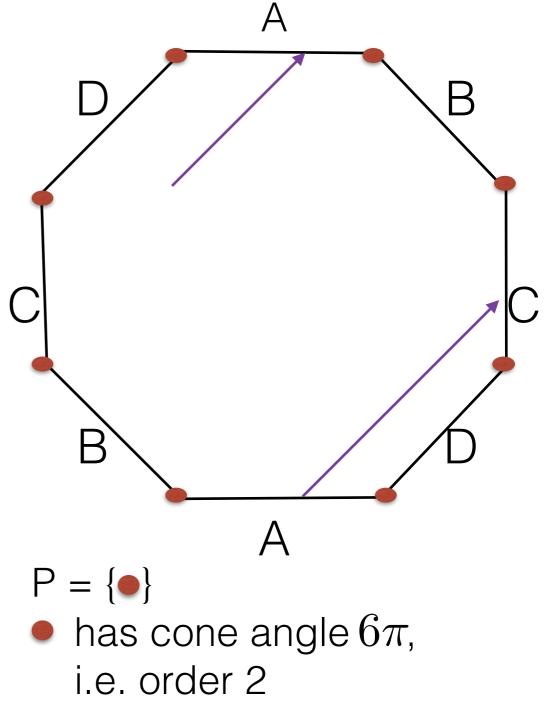
A translation surface is a closed, compact, 2-real-dimensional manifold M together with a finite subset of points $P \subset M$ and a maximal atlas of charts such that the restriction to $M \setminus P$ of each transition map is a translation.

⇒ On M\P, "directions" are well-defined
e.g. positive vertical direction
⇒ Euclidean metric

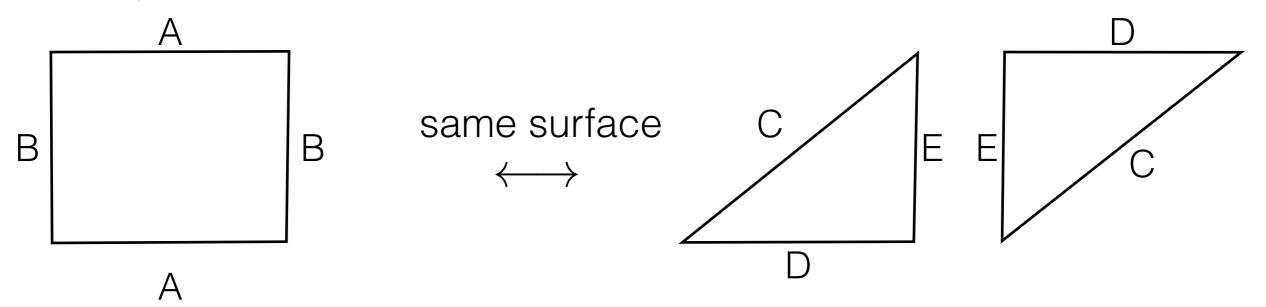
Points in P are called cone points.

⇒ The cone angle of a cone point is of the form $2\pi(k+1)$, $k \in \mathbb{N}^{\geq 0}$ k is the order of the cone point.

$$\Rightarrow \sum_{p \in P} \operatorname{order}(p) = 2g - 2$$



We care about underlying surface, not specific representation in terms of polygons/charts. i.e:



 $\mathcal{H}(k_1, \ldots, k_n)$ consists of all translation surfaces whose cone points are of orders k_1, \ldots, k_n . A"stratum in moduli space of translation surfaces"

Topology on $\mathcal{H}(k_1, \ldots, k_n)$: slightly perturbing the polygon edges yields "nearby" surfaces.

 $SL_2(\mathbb{R})$ acts on $\mathcal{H}(k_1,\ldots,k_n)$

(Each element determines a linear transformation of the plane; apply this transformation to the polygons/charts.)

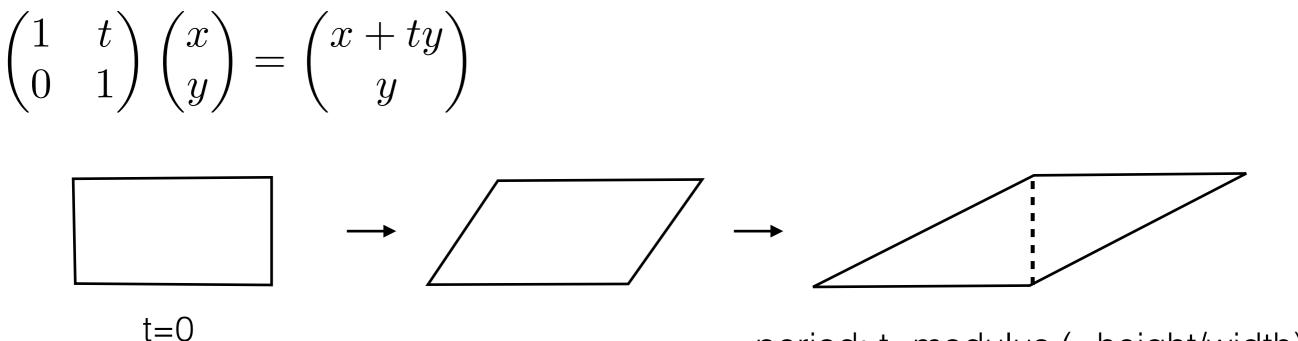
Action of one-parameter subgroups:

geodesic flow, G, action of matrices of form $g_t := \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ horocycle flow, H, action of matrices of form $h_t := \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ rotations, actions of matrices of form $r_{\theta} := \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin\theta & \cos(\theta) \end{pmatrix}$

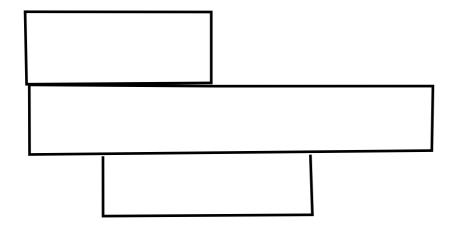
Understanding the dynamics of the SL2R action has been and continues to be the focus of a great deal of work by many people.

Dynamics of horocycle flow?

Notation: $\overline{H \cdot S}$ means closure in the stratum of the orbit of S under H



period: t=modulus (=height/width)



periodic (under H) if moduli all rationally related

Smillie and Weiss (2004):

Minimal sets for H <---> orbit closures (under H) surfaces that admit a horizontal cylinder decomposition.

(A minimal subset for a group G acting on a space X is a closed, G-invariant set that is a minimal such set with respect to inclusion.)

Theorem 1: For any translation surface M,
$$\overline{H \cdot r_{\theta} \cdot M} = \overline{SL_2(\mathbb{R}) \cdot M}$$
for (Lebesgue) almost every angle $\theta \in S^1$.

Theorem 1: For any translation surface M,

$$\overline{H \cdot r_{\theta} \cdot M} = \overline{SL_2(\mathbb{R}) \cdot M}$$

for (Lebesgue) almost every angle $\theta \in S^1$.

Theorem 2: The following are equivalent:

(i) M is a lattice (Veech) surface. (ii) For every angle $\theta \in S^1$, every H-minimal subset of $\overline{Hr_{\theta} \cdot M}$ is a periodic H-orbit.

(iii) Every H-minimal subset of $SL_2(\mathbb{R}) \cdot M$ is a periodic H-orbit.

(A lattice surface is a surface whose SL2R orbit is closed.)

Theorem 1: For any translation surface M, $\overline{H \cdot r_{\theta} \cdot M} = SL_2(\mathbb{R}) \cdot M$ for (Lebesgue) almost every angle $\theta \in S^1$.

Is the "almost every" necessary?

An easy way to see the answer is "yes": saddle connection directions. Horocycle flow preserves horizontal segments.

So if $r_{\theta} \cdot M$ has a horizontal saddle connection, every surface in

 $Hr_{\theta} \cdot M$ will have a horizontal saddle connection of the same length.

Open question: for what angles θ is $\overline{H \cdot r_{\theta} \cdot M} \neq \overline{SL_2(\mathbb{R}) \cdot M}$?

Eskin-Mirzakhani-Mohammadi (2013): $SL_2(\mathbb{R})$ orbits are "nice."

- technical term "affine invariant submanifolds"
- determined by linear equations in period coordinates
- no boundary
- SL2R invariant, ergodic probability measure with full support

Bainbridge-Smillie-Weiss (2016): classified H-inv. prob. measures in $\mathcal{H}(1, 1)$ Smillie-Weiss: examples of H-orbit closures that are very far from "nice." Fix an SL2R orbit closure \mathcal{M} with associated SL2R inv. ergodic prob. measure μ . Fix $M \in \mathcal{M}, SL_2(\mathbb{R}) \cdot M = \mathcal{M}$.

(Goal: for $\epsilon > 0$, show $Hr_{\theta} \cdot M$ is ϵ -dense in $\mathcal{M} \cap K_{\epsilon}$ for a full measure set of θ .)

The Mautner phenomenon for SL2R: An SL2R invariant measure on ${\cal H}$ is ergodic for SL2R if and only if it is ergodic for H.

So μ is ergodic for H.

So μ -almost every surface in ${\cal M}$ has a dense H-orbit.

Def: Say M is (L, ϵ)-nice if $[J_{h_s} \cdot M$ is ϵ -dense in $\mathcal{M} \cap K_{\epsilon}$

So there exist sets $\overset{s=0}{U_{L,\epsilon}}$ of (L, ϵ)-nice surfaces of measure arbitrarily close to 1.

(New goal: show $Hr_{ heta} \cdot M$ hits $U_{L,\epsilon}$ for a full measure set of heta)

A result from EMM guarantees that there exist arbitrarily large t s.t. all but percent of the "circle" (in theta) $g_t r_{\theta} \cdot M$ is in $U_{L,\epsilon}$.

So for arbitrarily large t, $g_t r_{\theta} \cdot M$ contains a point u in $U_{L,\epsilon}$

But for very large t, an ϵ -arc of $g_t r_{\theta} \cdot M \epsilon$ -approximates a length L segment of the horocycle flow applied to u.

So for sufficiently large t, ϵ -arcs of $\,g_t r_\theta \cdot M$ are 2epsilon-dense in $\mathcal{M} \cap K_\epsilon$.

Cartan decomposition: every element of SL2R can be written as $r_a g_b r_c$ for some a, b, c.

Use Cartan decomposition of h_s to turn into a statement that for sufficiently large s, any ϵ -arc of $h_s r_{\theta} \cdot M$ is 2epsilon-dense.

Push this train of logic more...take intersections of sets as $\epsilon \to 0 \dots$... and this leads to Theorem 1.

 $\overline{H \cdot r_{\theta} \cdot M} = \overline{SL_2(\mathbb{R}) \cdot M} \quad \text{for almost every angle } \theta \in S^1$

Thank you!