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◮ If A has positive measure, then {x ∈ A : f is differentiable at x} is
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◮ What if A has measure 0?
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differentiable almost everywhere w.r.t. the Lebesgue measure.

◮ If A has positive measure, then {x ∈ A : f is differentiable at x} is
not empty.
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2 Remark: For infinite-dimensional separable X , the dual X ∗ must be
separable as otherwise there is an equivalent norm on X which is
everywhere Fréchet non-differentiable.
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separable as otherwise there is an equivalent norm on X which is
everywhere Fréchet non-differentiable.
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4 ...moreover, points of differentiability can be found inside any fixed
beforehand dense Gδ subset S of X satisfying the condition that S
contains a dense set of lines.
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Background

We consider real-valued Lipschitz functions f : X → R.

1 If X is finite-dimensional, then Rademacher theorem implies f is
differentiable almost everywhere w.r.t. the Lebesgue measure.

◮ If A has positive measure, then {x ∈ A : f is differentiable at x} is
not empty.

◮ What if A has measure 0?

2 Remark: For infinite-dimensional separable X , the dual X ∗ must be
separable as otherwise there is an equivalent norm on X which is
everywhere Fréchet non-differentiable.

3 X ∗ separable =⇒ every Lipschitz function is differentiable on a
dense subset of X [Preiss, 1990] and ...

4 ...moreover, points of differentiability can be found inside any fixed
beforehand dense Gδ subset S of X satisfying the condition that S
contains a dense set of lines.

Universal Differentiability Set (UDS)

A Borel set S ⊆ X is a UDS if for every Lipschitz function f : X → R

there is an x ∈ S such that f is (Fréchet) differentiable at x .
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Finite-dimensional case, Rademacher’s Theorem

1 Every subset of Rn of positive measure is a UDS.
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Finite-dimensional case, Rademacher’s Theorem

1 Every subset of Rn of positive measure is a UDS.

2 If n ≥ 2 one can choose a Gδ set S ⊆ R
n to contain all rational lines

and to have measure 0. Hence there are Lebesgue null universal
differentiability subsets of Rn, n ≥ 2.
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1 Every subset of Rn of positive measure is a UDS.

2 If n ≥ 2 one can choose a Gδ set S ⊆ R
n to contain all rational lines

and to have measure 0. Hence there are Lebesgue null universal
differentiability subsets of Rn, n ≥ 2.

3 In R
1, however, for every subset E of measure 0 one can find a

Lipschitz function which fails to have a derivative inside E .
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Lipschitz function which fails to have a derivative inside E .
◮ Zahorski (1946)
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Finite-dimensional case, Rademacher’s Theorem

1 Every subset of Rn of positive measure is a UDS.

2 If n ≥ 2 one can choose a Gδ set S ⊆ R
n to contain all rational lines

and to have measure 0. Hence there are Lebesgue null universal
differentiability subsets of Rn, n ≥ 2.

3 In R
1, however, for every subset E of measure 0 one can find a

Lipschitz function which fails to have a derivative inside E .
◮ Zahorski (1946)
◮ Fowler–Preiss (2009)

Given any Gδ set G ⊆ R of measure zero, there exists a Lipschitz
function g : R → R with Lipschitz constant 1, which is differentiable
everywhere outside G and for any x ∈ G , g ′

±(x) = ±1.
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Finite-dimensional case, Rademacher’s Theorem

1 Every subset of Rn of positive measure is a UDS.

2 If n ≥ 2 one can choose a Gδ set S ⊆ R
n to contain all rational lines

and to have measure 0. Hence there are Lebesgue null universal
differentiability subsets of Rn, n ≥ 2.

3 In R
1, however, for every subset E of measure 0 one can find a

Lipschitz function which fails to have a derivative inside E .
◮ Zahorski (1946)
◮ Fowler–Preiss (2009)

Given any Gδ set G ⊆ R of measure zero, there exists a Lipschitz
function g : R → R with Lipschitz constant 1, which is differentiable
everywhere outside G and for any x ∈ G , g ′

±(x) = ±1.

Sharpness of the result, n ≥ 2

[Preiss, 1990] [Alberti, Csörnyei, Preiss 2010] [Doré–M., 2010, ’11, ’12]
[Dymond–M., 2013] [Preiss–Speight, 2013] [Csörnyei, Jones 2013]
If n ≥ 2, then R

n contains Lebesgue null universal differentiability
subsets.
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Examples of non-universal differentiability sets

Classical results

1. E ⊆ X is porous.
Def. Let λ > 0. E ⊆ X is λ-porous at x ∈ X if for every r > 0 there is a
z ∈ B(x , r) such that B(z , λ‖z − x‖) ∩ E = ∅.

z

x
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Classical results

1. E ⊆ X is porous.
Def. Let λ > 0. E ⊆ X is λ-porous at x ∈ X if for every r > 0 there is a
z ∈ B(x , r) such that B(z , λ‖z − x‖) ∩ E = ∅.

z

x

E is porous at x ∈ E ⇒
f (y) = dist(y ,E ) is 1-Lipschitz and
is not differentiable at x .
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Examples of non-universal differentiability sets

Classical results

1. E ⊆ X is porous.
Def. Let λ > 0. E ⊆ X is λ-porous at x ∈ X if for every r > 0 there is a
z ∈ B(x , r) such that B(z , λ‖z − x‖) ∩ E = ∅.

z

x

E is porous at x ∈ E ⇒
f (y) = dist(y ,E ) is 1-Lipschitz and
is not differentiable at x .

f (z) − f (x)

‖z − x‖
≥ λ

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability



Examples of non-universal differentiability sets

Classical results

1. E ⊆ X is porous.
Def. Let λ > 0. E ⊆ X is λ-porous at x ∈ X if for every r > 0 there is a
z ∈ B(x , r) such that B(z , λ‖z − x‖) ∩ E = ∅.

z

x

E is porous at x ∈ E ⇒
f (y) = dist(y ,E ) is 1-Lipschitz and
is not differentiable at x .

f (z) − f (x)

‖z − x‖
≥ λ

E ⊆ X is porous if ∃λ > 0 s.t. it is
λ-porous at each of its points.
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Further examples of non-UDS and UDS

Classical results: non-UDS

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
the set of points where f is not Fréchet differentiable contains E .

Thus porous sets are not UDS.
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Further examples of non-UDS and UDS

Classical results: non-UDS

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
the set of points where f is not Fréchet differentiable contains E .

Thus porous sets are not UDS.

2. E ⊆ X is σ-porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zaj́ıček (1980s):
There exists a Lipschitz function f : X → R that is nowhere diff. on E .

Thus σ-porous sets are not UDS.
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Further examples of non-UDS and UDS

Classical results: non-UDS

1. E ⊆ X is porous, then f (x) = dist(x ,E ) is a 1-Lipschitz function and
the set of points where f is not Fréchet differentiable contains E .

Thus porous sets are not UDS.

2. E ⊆ X is σ-porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zaj́ıček (1980s):
There exists a Lipschitz function f : X → R that is nowhere diff. on E .

Thus σ-porous sets are not UDS.

Classical results: UDS

3. D. Preiss (1990):
X ∗ separable =⇒ any Gδ set containing a dense set of lines is a UDS.
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UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS,
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Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.
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UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): n ≥ 1 =⇒ there is a compact UDS in
R

n of Hausdorff dimension 1 (so its Lebesgue measure is zero if n ≥ 2).
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UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): n ≥ 1 =⇒ there is a compact UDS in
R

n of Hausdorff dimension 1 (so its Lebesgue measure is zero if n ≥ 2).

3. M. Doré–O.M. (2012): X ∗ separable =⇒ there is a closed bounded
totally disconnected UDS of Hausdorff dimension 1.

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability



UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.
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UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): n ≥ 1 =⇒ there is a compact UDS in
R

n of Hausdorff dimension 1 (so its Lebesgue measure is zero if n ≥ 2).

3. M. Doré–O.M. (2012): X ∗ separable =⇒ there is a closed bounded
totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1?
4. M. Dymond–O.M. (2013): In any R

n there is a (compact) UDS of
Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).
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UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): n ≥ 1 =⇒ there is a compact UDS in
R

n of Hausdorff dimension 1 (so its Lebesgue measure is zero if n ≥ 2).

3. M. Doré–O.M. (2012): X ∗ separable =⇒ there is a closed bounded
totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1?
4. M. Dymond–O.M. (2013): In any R

n there is a (compact) UDS of
Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

5. D. Preiss–G. Speight (2013):
n > m ≥ 1, ε > 0 =⇒ there is a set E ⊆ R

n of Hausdorff dimension
less than m+ ε such that it is a UDS w.r.t. Lipschitz f : Rn → R

m.
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UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): n ≥ 1 =⇒ there is a compact UDS in
R

n of Hausdorff dimension 1 (so its Lebesgue measure is zero if n ≥ 2).

3. M. Doré–O.M. (2012): X ∗ separable =⇒ there is a closed bounded
totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1?
4. M. Dymond–O.M. (2013): In any R

n there is a (compact) UDS of
Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

5. D. Preiss–G. Speight (2013):
n > m ≥ 1, ε > 0 =⇒ there is a set E ⊆ R

n of Hausdorff dimension
less than m+ ε such that it is a UDS w.r.t. Lipschitz f : Rn → R

m.

6. G. Alberti, M. Csörnyei, D. Preiss (2010): n = m = 2 =⇒ ∀E ⊂ R
2

of Lebesgue measure 0 is non-UDS w.r.t. Lipschitz f : R2 → R
2.
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UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null Gδ UDS, however its closure is always
equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): n ≥ 1 =⇒ there is a compact UDS in
R

n of Hausdorff dimension 1 (so its Lebesgue measure is zero if n ≥ 2).

3. M. Doré–O.M. (2012): X ∗ separable =⇒ there is a closed bounded
totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1?
4. M. Dymond–O.M. (2013): In any R

n there is a (compact) UDS of
Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

5. D. Preiss–G. Speight (2013):
n > m ≥ 1, ε > 0 =⇒ there is a set E ⊆ R

n of Hausdorff dimension
less than m+ ε such that it is a UDS w.r.t. Lipschitz f : Rn → R

m.

6. G. Alberti, M. Csörnyei, D. Preiss (2010): n = m = 2 =⇒ ∀E ⊂ R
2

of Lebesgue measure 0 is non-UDS w.r.t. Lipschitz f : R2 → R
2.

7. M. Csörnyei–P. Jones (2013): n = m > 2 =⇒ ∀E ⊂ R
n of Lebesgue

measure 0 is non-UDS w.r.t. Lipschitz f : Rn → R
m.
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Hausdorff and Minkowski dimension

Let A ⊂ R
n.

Hausdorff dimension

Hp(A) = lim
δ↓0

inf
{

∑

i

diam(Ei )
p : A ⊆

⋃

i

Ei , diam(Ei) ≤ δ
}

.

is the p-dimensional Hausdorff measure of A.
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Hausdorff and Minkowski dimension

Let A ⊂ R
n.

Hausdorff dimension

Hp(A) = lim
δ↓0

inf
{

∑

i

diam(Ei )
p : A ⊆

⋃

i

Ei , diam(Ei) ≤ δ
}

.

is the p-dimensional Hausdorff measure of A.

Hausdorff dimension:

dimH(A) = inf{p : Hp(A) = 0}.

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability



Hausdorff and Minkowski dimension

Let A ⊂ R
n.

Hausdorff dimension

Hp(A) = lim
δ↓0

inf
{

∑

i

diam(Ei )
p : A ⊆

⋃

i

Ei , diam(Ei) ≤ δ
}

.

is the p-dimensional Hausdorff measure of A.

Hausdorff dimension:

dimH(A) = inf{p : Hp(A) = 0}.

Minkowski (box counting) dimension

Now for each δ > 0 let Nδ be the minimal possible number of balls of
radius δ with which it is possible to cover A. Then

dimM(A)/dimM(A) = inf{p : limδ↓0/limδ↓0Nδδ
p = 0}

is the upper (lower) Minkowski dimension of A.
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability



Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.

dimH(P(E )) < 1 ⇒ |P(E )| = 0, contradiction.
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.

dimH(P(E )) < 1 ⇒ |P(E )| = 0, contradiction.

If dimM(E ) = 1 and E is a UDS then
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.

dimH(P(E )) < 1 ⇒ |P(E )| = 0, contradiction.

If dimM(E ) = 1 and E is a UDS then dimM(E ) = dimH(E ) = 1.
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.

dimH(P(E )) < 1 ⇒ |P(E )| = 0, contradiction.

If dimM(E ) = 1 and E is a UDS then dimM(E ) = dimH(E ) = 1.

E is a UDS =⇒ H1(E ) = ∞, even not σ-finite
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.

dimH(P(E )) < 1 ⇒ |P(E )| = 0, contradiction.

If dimM(E ) = 1 and E is a UDS then dimM(E ) = dimH(E ) = 1.

E is a UDS =⇒ H1(E ) = ∞, even not σ-finite

If H1(E ) is σ-finite =⇒ Federer’s structure theorem implies
E =rectifiable ∪ proj.0
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.

dimH(P(E )) < 1 ⇒ |P(E )| = 0, contradiction.

If dimM(E ) = 1 and E is a UDS then dimM(E ) = dimH(E ) = 1.

E is a UDS =⇒ H1(E ) = ∞, even not σ-finite

If H1(E ) is σ-finite =⇒ Federer’s structure theorem implies
E =rectifiable ∪ proj.0= non-UDS ∪ proj.0
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.

dimH(P(E )) < 1 ⇒ |P(E )| = 0, contradiction.

If dimM(E ) = 1 and E is a UDS then dimM(E ) = dimH(E ) = 1.

E is a UDS =⇒ H1(E ) = ∞, even not σ-finite

If H1(E ) is σ-finite =⇒ Federer’s structure theorem implies
E =rectifiable ∪ proj.0= non-UDS ∪ proj.0 =⇒ E is non-UDS.
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Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
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Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
x ∈ Eλ, ‖e‖ = 1, 0 < δ < δ∗ =⇒
there exists [x ′, x ′ + δe ′] ⊆ Eλ′

with ‖x − x ′‖ < ηδ and ‖e − e ′‖ < η,

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability



Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
x ∈ Eλ, ‖e‖ = 1, 0 < δ < δ∗ =⇒
there exists [x ′, x ′ + δe ′] ⊆ Eλ′

with ‖x − x ′‖ < ηδ and ‖e − e ′‖ < η,
then each Eλ is a universal differentiability set.
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Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
x ∈ Eλ, ‖e‖ = 1, 0 < δ < δ∗ =⇒
there exists γ : [0, δ] → X Lipschitz, ‖γ(0)− x‖ < ηδ, ‖γ′(t)− e‖ < η,
|γ−1(Eλ′)| ≥ δ(1− η)
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Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
x ∈ Eλ, ‖e‖ = 1, 0 < δ < δ∗ =⇒
there exists γ : [0, δ] → X Lipschitz, ‖γ(0)− x‖ < ηδ, ‖γ′(t)− e‖ < η,
|γ−1(Eλ′)| ≥ δ(1− η)
then each Eλ is a universal differentiability set.

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability



Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
x ∈ Eλ, ‖e‖ = 1, 0 < δ < δ∗ =⇒
there exists γ : [0, δ] → X Lipschitz, ‖γ(0)− x‖ < ηδ, ‖γ′(t)− e‖ < η,
|γ−1(Eλ′)| ≥ δ(1− η)
then each Eλ is a universal differentiability set.

Moreover, for each f : Rn → R Lipschitz, the set D = Df ∩ Eλ

◮ is dense in Eλ and
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Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
x ∈ Eλ, ‖e‖ = 1, 0 < δ < δ∗ =⇒
there exists γ : [0, δ] → X Lipschitz, ‖γ(0)− x‖ < ηδ, ‖γ′(t)− e‖ < η,
|γ−1(Eλ′)| ≥ δ(1− η)
then each Eλ is a universal differentiability set.

Moreover, for each f : Rn → R Lipschitz, the set D = Df ∩ Eλ

◮ is dense in Eλ and

◮ for each x ∈ Eλ′ , the set P(D ∩ B(x , r)) has a full measure on the
interval (Px −∆,Px +∆) for ∆ = min{r , δ∗}/2.
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Approximation property – differentiability condition

Approximation property (Dymond–O.M. 2013; Dymond 2014)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property : for all 0 < λ < λ′ < 1
and η > 0 there is a threshold δ∗ = δ∗(λ, λ′, η) such that
x ∈ Eλ, ‖e‖ = 1, 0 < δ < δ∗ =⇒
there exists γ : [0, δ] → X Lipschitz, ‖γ(0)− x‖ < ηδ, ‖γ′(t)− e‖ < η,
|γ−1(Eλ′)| ≥ δ(1− η)
then each Eλ is a universal differentiability set.

Moreover, for each f : Rn → R Lipschitz, the set D = Df ∩ Eλ

◮ is dense in Eλ and

◮ for each x ∈ Eλ′ , the set P(D ∩ B(x , r)) has a full measure on the
interval (Px −∆,Px +∆) for ∆ = min{r , δ∗}/2.
(strong Projection property)

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability



UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]
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Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]

◮ and ker(ker(E )) = ker(E ).
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]

◮ and ker(ker(E )) = ker(E ).

Clearly, Df ∩ ker(E ) is dense in ker(E ).
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]

◮ and ker(ker(E )) = ker(E ).

Clearly, Df ∩ ker(E ) is dense in ker(E ).

Questions

Should a UDS E = ker(E ) satisfy a curve Approximation Property?
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]

◮ and ker(ker(E )) = ker(E ).

Clearly, Df ∩ ker(E ) is dense in ker(E ).

Questions

Should a UDS E = ker(E ) satisfy a curve Approximation Property?
UDS =⇒ not u.p.u. (ACP, 2010) (existence of a Lipschitz function not
directionally differentiable at any point)
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]

◮ and ker(ker(E )) = ker(E ).

Clearly, Df ∩ ker(E ) is dense in ker(E ).

Questions

Should a UDS E = ker(E ) satisfy a curve Approximation Property?
UDS =⇒ not u.p.u. (ACP, 2010) (existence of a Lipschitz function not
directionally differentiable at any point)
=⇒ not purely 1-unrectifiable (A. Máthé 2014)
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]

◮ and ker(ker(E )) = ker(E ).

Clearly, Df ∩ ker(E ) is dense in ker(E ).

Questions

Should a UDS E = ker(E ) satisfy a curve Approximation Property?
UDS =⇒ not u.p.u. (ACP, 2010) (existence of a Lipschitz function not
directionally differentiable at any point)
=⇒ not purely 1-unrectifiable (A. Máthé 2014)
=⇒ positive intersection with curves around any point.
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UDS existence – open questions

Theorem (Dymond, 2013)

E is a UDS =⇒

◮ ker(E ) = {x ∈ E : B(x , r) ∩ E is a UDS ∀r > 0} is a UDS
[related to Zelený–Pelant The structure of the σ-ideal of σ-porous
sets (2004).]

◮ and ker(ker(E )) = ker(E ).

Clearly, Df ∩ ker(E ) is dense in ker(E ).

Questions

Should a UDS E = ker(E ) satisfy a curve Approximation Property?
UDS =⇒ not u.p.u. (ACP, 2010) (existence of a Lipschitz function not
directionally differentiable at any point)
=⇒ not purely 1-unrectifiable (A. Máthé 2014)
=⇒ positive intersection with curves around any point.

Weak Conjecture

E UDS, ε > 0, x ∈ ker(E ) =⇒ ∃γ, ‖γ′ − e‖ < ε with |γ−1(E )| > 0
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Construction

k
W R = Rk+1 = Qs , Q > 1, wk+1 = wk/R
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Construction

k
W R = Rk+1 = Qs , Q > 1, wk+1 = wk/R

Total number of cubes wk+1 × wk+1:
R + s × Qs + sQ × Qs−1 + · · ·+

+sQs−1 × Q ∼ s2Qs = R(logR)2
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Construction

k
W R = Rk+1 = Qs , Q > 1, wk+1 = wk/R

Total number of cubes wk+1 × wk+1:
R + s × Qs + sQ × Qs−1 + · · ·+

+sQs−1 × Q ∼ s2Qs = R(logR)2

Repeat for ∀ new tube =⇒ R(logR)4,
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Construction

k
W R = Rk+1 = Qs , Q > 1, wk+1 = wk/R

Total number of cubes wk+1 × wk+1:
R + s × Qs + sQ × Qs−1 + · · ·+

+sQs−1 × Q ∼ s2Qs = R(logR)2

Repeat for ∀ new tube =⇒ R(logR)4,

Again and again: R(logR)2m cubes.
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Construction

k
W R = Rk+1 = Qs , Q > 1, wk+1 = wk/R

Total number of cubes wk+1 × wk+1:
R + s × Qs + sQ × Qs−1 + · · ·+

+sQs−1 × Q ∼ s2Qs = R(logR)2

Repeat for ∀ new tube =⇒ R(logR)4,

Again and again: R(logR)2m cubes.
Nwk+1

≤ Nwk
×mR(logR)2m

As p > 1,
Nwk+1

w
p

k+1

Nwk
w

p

k

≤ (logR)2m+1R1−p < 1, R large
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Construction

k
W R = Rk+1 = Qs , Q > 1, wk+1 = wk/R

Total number of cubes wk+1 × wk+1:
R + s × Qs + sQ × Qs−1 + · · ·+

+sQs−1 × Q ∼ s2Qs = R(logR)2

Repeat for ∀ new tube =⇒ R(logR)4,

Again and again: R(logR)2m cubes.
Nwk+1

≤ Nwk
×mR(logR)2m

As p > 1,
Nwk+1

w
p

k+1

Nwk
w

p

k

≤ (logR)2m+1R1−p < 1, R large

For δ ∈ (wk+1,wk): Nδδ
p ≤ Nwk+1

wp
k = Nwk+1

wp
k+1R

p.
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Construction

k
W R = Rk+1 = Qs , Q > 1, wk+1 = wk/R

Total number of cubes wk+1 × wk+1:
R + s × Qs + sQ × Qs−1 + · · ·+

+sQs−1 × Q ∼ s2Qs = R(logR)2

Repeat for ∀ new tube =⇒ R(logR)4,

Again and again: R(logR)2m cubes.
Nwk+1

≤ Nwk
×mR(logR)2m

As p > 1,
Nwk+1

w
p

k+1

Nwk
w

p

k

≤ (logR)2m+1R1−p < 1, R large

For δ ∈ (wk+1,wk): Nδδ
p ≤ Nwk+1

wp
k = Nwk+1

wp
k+1R

p.

We show: Nwk+1
wp
k+1R

p
k+1 → 0
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Further ideas

k
W

Can we get Nwk+1
≤ Nwk

× RΦ(R)
for any Φ(R) ր ∞ chosen in advance?
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Further ideas

k
W

Can we get Nwk+1
≤ Nwk

× RΦ(R)
for any Φ(R) ր ∞ chosen in advance?

Describe the class of gauge functions f
for which
Mf (N) = limδ>0Nδf (δ) or
Mf (N) = limδ>0Nδf (δ)
is finite.
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Further ideas
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Can we get Nwk+1
≤ Nwk

× RΦ(R)
for any Φ(R) ր ∞ chosen in advance?

Describe the class of gauge functions f
for which
Mf (N) = limδ>0Nδf (δ) or
Mf (N) = limδ>0Nδf (δ)
is finite.

We know limδ→0 Nδδ is infinite.
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Further ideas

k
W

Can we get Nwk+1
≤ Nwk

× RΦ(R)
for any Φ(R) ր ∞ chosen in advance?

Describe the class of gauge functions f
for which
Mf (N) = limδ>0Nδf (δ) or
Mf (N) = limδ>0Nδf (δ)
is finite.

We know limδ→0 Nδδ is infinite.

Conjecture

Let F = {f (x) = o(x), x → 0}.
If N is a UDS and F(N) = {f ∈ F : Mf (N) < ∞} then
∃f0 ∈ F s.t. f = o(f0) ∀f ∈ F(N).
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Further ideas

k
W

Can we get Nwk+1
≤ Nwk

× RΦ(R)
for any Φ(R) ր ∞ chosen in advance?

Describe the class of gauge functions f
for which
Mf (N) = limδ>0Nδf (δ) or
Mf (N) = limδ>0Nδf (δ)
is finite.

We know limδ→0 Nδδ is infinite.

Conjecture

Let F = {f (x) = o(x), x → 0}.
If N is a UDS and F(N) = {f ∈ F : Mf (N) < ∞} then
∃f0 ∈ F s.t. f = o(f0) ∀f ∈ F(N).

If f0 ∈ F then there exists a UDS N such that f = o(f0) ∀f ∈ F(N).
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More open questions

Conjectures

1. In R
d , d ≥ 2, every set of positive measure contains a (closed)

universal differentiability subset of Lebesgue measure zero.
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More open questions

Conjectures

1. In R
d , d ≥ 2, every set of positive measure contains a (closed)

universal differentiability subset of Lebesgue measure zero.
|A| > 0 =⇒ AP:
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More open questions

Conjectures

1. In R
d , d ≥ 2, every set of positive measure contains a (closed)

universal differentiability subset of Lebesgue measure zero.
|A| > 0 =⇒ AP:
consider A in a small grid and decide which boxes have a good ’chance of
survival’
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More open questions

Conjectures

1. In R
d , d ≥ 2, every set of positive measure contains a (closed)

universal differentiability subset of Lebesgue measure zero.
|A| > 0 =⇒ AP:
consider A in a small grid and decide which boxes have a good ’chance of
survival’
=⇒ use density to get the AP with |γ−1(Eλ)| > (1− η)δ.
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More open questions

Conjectures

1. In R
d , d ≥ 2, every set of positive measure contains a (closed)

universal differentiability subset of Lebesgue measure zero.
|A| > 0 =⇒ AP:
consider A in a small grid and decide which boxes have a good ’chance of
survival’
=⇒ use density to get the AP with |γ−1(Eλ)| > (1− η)δ.

2. Every UDS contains a closed universal differentiability subset.
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