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These are Lecture Notes for the 1st year Analysis 1B course in Bristol
originally prepared by Roman Schubert. This is an evolving version of them,
and it is very likely that they still contain misprints. Please report errors
and misprints you find to me (thomas.jordan@bristol.ac.uk) and I will
post an update on the Blackboard page of the course.

These notes cover the main material we will develop in the course, and
they are meant to be used parallel to the lectures. The lectures will fol-
low roughly the content of the notes, but sometimes in a different order and
sometimes containing additional material. On the other hand, we sometimes
refer in the lectures to additional material which is covered in the notes. Be-
sides the lectures and the lecture notes, the homework on the problem sheets
is the third main ingredient in the course. Solving problems is the most effi-
cient way of learning mathematics, and experience shows that students who
regularly hand in homework do well in the exams.

These lecture notes do not replace a proper textbook in Analysis. Since
Analysis appears in almost every area in Mathematics a slightly more ad-
vanced textbook which complements the lecture notes will be a good com-
panion throughout your mathematics courses. There is a wide choice of
books in the library you can consult.

For the preparation of these notes I mostly consulted

(a) John M. Howie, Real Analysis, Springer 2001

(b) Kenneth A. Ross, Elementary Analysis, Springer 2013

(c) Michael Reed, Fundamental Ideas of Analysis, Wiley 1998

(d) Otto Forster, Analysis 1, Springer 2013

The book by Howie focuses on the essentials, and it is the one I followed
most closely. For some material which is not covered in the book by Howie, I
consulted Ross. The book by Forster is a german textbook, it covers slightly
more material than the previous two in a more condensed form. Finally the
book by Reed is a very readable introduction to analysis which covers as well
some applications and relations to other areas of mathematics and touches
on a few more advanced topics.

This course follows on from the Analysis 1A unit, which had 7 chapters,
and therefore in these notes we start with Chapter 8.
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Chapter 8

Uniform continuity and
uniform convergence

In Analysis 1A we considered properties of sequences of real numbers and
at the end used these to define continuity of functions. In this first chapter
of Analysis 1B we will consider sequences of functions and ask for instance
what conditions we need to impose on a sequence of continuous functions,
so that the limit is again a continuous function. The two key concepts
we introduce in the first two sections are uniform continuity and uniform
convergence, respectively.

8.1 Uniform continuity

Let A ⊂ R, recall that a function f : A→ R is called continuous on A, if for
all a ∈ A and ε > 0 there exists a δ > 0 such that

|f(x)− f(a)| ≤ ε for all x ∈ A with |x− a| ≤ δ .

Here δ depends on ε and on a. If we require δ to be independent of a, then
we obtain a stronger notion:

Definition 8.1. Let f : A → R, f is called uniformly continuous on A
if for all ε > 0 there exists a δ > 0 such that for all x, y ∈ A we have if
|x− y| ≤ δ then |f(x)− f(y)| ≤ ε.

Exercise. (a) Consider A = (0, 1), f : (0, 1) → R, f(x) = 1/x, this
function is continuous, but not uniformly continuous. To see this let
us choose an ε > 0 and assume there exists a δ > 0 such that |f(x)−
f(y)| ≤ ε for |y − x| ≤ δ. Then in particular we should have f(x) −
f(x+ δ) ≤ ε for all x ∈ (0, 1− δ), but

f(x)− f(x+ δ) =
1

x
− 1

x+ δ
=

δ

x(x+ δ)

and the right hand side becomes arbitrary large for x→ 0.
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(b) Consider A = [1/2, 1), f : [1/2, 1) → R, f(x) = 1/x then f is uni-
formly continuous. Since 1/x ≤ 2 for x ∈ [1/2, 1) we have

|f(x)− f(y)| = |y − x|
yx

≤ 4|y − x| ≤ ε

for |y − x| ≤ δ with δ = ε/4.

A continuous function on a closed bounded interval turns out to be
uniformly continuous, this is the main result of this section.

Theorem 8.2. Let f : [a, b] → R be continuous, then f is uniformly con-
tinuous on [a, b].

Proof. Let us assume f is not uniformly continuous, then there exists an
ε > 0 such that for any n ∈ N there are xn, yn ∈ [a, b] such that

|xn − yn| ≤
1

n
and |f(xn)− f(yn)| > ε .

This is the negation of the condition for uniform continuity, where 1/n =
δ. Now (xn) is a bounded sequence, hence by the Theorem of Bolzano
Weierstrass there exists a convergent subsequence (xnk

) with limk→∞ ank
=

p, and since a ≤ ank
≤ b we have p ∈ [a, b] (here we used that the interval

[a, b] is closed, otherwise the limit might not lie in the interval). Since
|xn − yn| ≤ 1

n the subsequence (ynk
) converges as well to p and since f is

continuous on [a, b] we have

lim
n→∞

|f(ynk
)− f(xnk

)| = 0

which contradicts the assumption that |f(xn) − f(yn)| > ε. Hence f is
uniformly continuous.

Example. Discretisation. Let us discuss the problem of how to approximate
a function f : [a, b] → R by finitely many values. Define for n ∈ N xk :=
a + k

n(b − a), k = 1, 2, · · · , n, then we can consider the values of f at the
points xk,

(f(x1), f(x2), · · · , f(xn)) ∈ Rn , (8.1)

as providing a discrete approximation for f . We can define a step function
ψn(x) : [a, b]→ R by

ψn(x) := f(xk) , for x ∈ (xk−1, xk] (8.2)

and ψn(a) := f(a), see Figure 8.1. The following result tells us that this
construction provides a good approximation if the function f is uniformly
continuous.

3



a=x x x x x =b
0 1 2 3 4

Figure 8.1: Sketch of the approximation of a uniformly continuous function
f(x) (solid line) by a step function ψ(x) (dashed line) in Example 8.1.

Theorem 8.3. Suppose f : [a, b] → R is uniformly continuous and ψn(x),
n ∈ N, is constructed as in Example 8.1, then for any ε > 0 there exists a
N ∈ N such that for all n ≥ N

|f(x)− ψn(x)| ≤ ε for all x ∈ [a, b] . (8.3)

Proof. Let ε > 0, since f is uniformly continuous, there exists a δ > 0 such
that |f(x)− f(xk)| ≤ ε if |x− xk| ≤ δ. Now because xk − xk−1 = (b− a)/n
we see that if N > (b− a)/δ, then |f(x)− ψn(x)| ≤ ε.

Example. The conclusion of the theorem is no longer true if we just assume
continuity. Consider the function f : (0, 1]→ R, f(x) := 1/x, then for any
n ∈ N

sup
x∈(0,1/n]

∣∣∣∣1x − n
∣∣∣∣ =∞ , (8.4)

hence we cannot approximate this function by the ψn defined in (8.3) uni-
formly for all x ∈ (0, 1]. The precise meaning of this statement will be
discuss in the next section.

8.2 Pointwise and uniform convergence

Let us now consider sequences of functions (fn), where fn : A → R. It
turns out that one can introduce many different notions of convergence for
sequences of functions, which depend on what properties one wants the limits
to have. The first notion of convergence one would introduce is to ask for
(fn(x)) to be convergent for any x ∈ A, this is called pointwise convergence:
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Definition 8.4. Let (fn)n∈N, where fn : A→ R, be a sequence of functions,
we say that fn converges to f : A → R pointwise if for any x ∈ A the
sequence (fn(x)) converges to f(x), or, if for any ε > 0 and x ∈ A, there
exists N ∈ N such that

|fn(x)− f(x)| ≤ ε for all n ≥ N .

Exercise. (a) Let fn(x) := xn : [0, 1]→ R. Then

lim
n→∞

fn(x) =

{
0 x ∈ [0, 1)

1 x = 1
.

(b) Let fn : R→ R be defined by

fn(x) =


−1 x ≤ − 1

n

nx − 1
n < x < 1

n

1 x ≥ 1
n

,

then limn→∞ fn(x) = χ(x) where χ(x) = x/|x| for x 6= 0 and χ(0) = 0.

(c) Let gn : R→ R be

gn(x) :=
x√

1/n+ x2
,

then limn→∞ gn(x) = χ(x).

The examples show that even if the functions in a sequence fn are con-
tinuous, the limit does not have to be continuous.

So in order to guarantee that a limit of a sequence of continuous func-
tions is continuous we have to pose stronger conditions on the mode of
convergence.

Definition 8.5. Let (fn)n∈N, where fn : A→ R, be a sequence of functions,
we say that fn converges to f : A → R uniformly if for any ε > 0 there
exist a N ∈ N such that

|fn(x)− f(x)| ≤ ε for all n ≥ N and x ∈ A .

The relationship between pointwise convergence and uniform conver-
gence is similar to the relationship between continuity and uniform continu-
ity. In the definition of pointwise convergence the N depends on ε > 0 and
x ∈ A, whereas in the definition of uniform convergence the N is indepen-
dent of x. Hence limn→∞ fn = f uniformly means for any ε > 0 there is an
N ∈ N such that for all n ≥ N

sup
x∈A
|fn(x)− f(x)| ≤ ε .
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Exercise. (a) The sequence in first example above, fn(x) := xn : [0, 1]→
R, does not converge uniformly. Let p ∈ (0, 1) and set xn = p1/n, then
fn(xn) = p, so

sup
x∈[0,1]

|fn(x)− f(x)| ≥ p

independent of n.

(b) If we restrict in the previous example the interval to [0, a] with a ∈
(0, 1), then

sup
x∈[0,a]

|fn(x)| = an

and since limn→∞ a
n = 0 there exist for any ε > 0 a N ∈ N such that

supx∈[0,a]|fn(x)| ≤ ε for n ≥ N , so limn→∞ fn(x) = 0 uniformly on
[0, a] if 0 < a < 1.

(c) Consider the sequence fn : [0, 1]→ R,

fn(x) =
x

1 + (x/2)n
.

Since an → 0 for n → ∞ if |a| < 1 we have for any x ∈ [0, 1] that
limn→∞ fn(x) = x pointwise. Now

|fn(x)− x| = x

∣∣∣∣1− (1 + (x/2)n)

1 + (x/2)n

∣∣∣∣ = x
(x/2)n

1 + (x/2)n
≤ x(x/2)n ≤ 1/2n

so for any ε > 0 there exist a N ∈ N such that |fn(x) − x| ≤ ε for
n > N since 1/2n → 0 for n→∞. So we have as well limn→∞ fn = x
uniformly.

We can now show that a uniform limit of a sequence of continuous func-
tions is continuous.

Theorem 8.6 (Weierstrass). Let fn : [a, b] → R be a sequence of func-
tions which converge uniformly to f : [a, b] → R. If the functions fn are
continuous, then f is continuous.

Proof. Let ε > 0, since (fn) converges uniformly to f there exists N ∈ N
such that for n > N and all x ∈ [a, b]

|f(x)− fn(x)| ≤ ε/3 .

Fix an n with n > N , since fn is uniformly continuous there exists δ > 0
such that

|fn(x)− fn(y)| ≤ ε/3
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for y ∈ (x− δ, x+ δ) ∩ [a, b], and so for y ∈ (x− δ, x+ δ) ∩ [a, b]

|f(x)− f(y)| = |f(x)− fn(x) + fn(x)− fn(y) + fn(y)− f(y)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ ε/3 + ε/3 + ε/3 = ε

Hence f is continuous on [a, b].

The notion of uniform convergence is often formalised by using a norm.

Definition 8.7. Let A = [a, b] be a closed interval, and f : [a, b] → R be
bounded, the supremum norm (or sup norm) of f is defined as

‖f‖ := sup
x∈A
|f(x)|

The sup norm measure the size of a function in terms of its maximum
value. The following properties mean that it is a norm on the vector space
of all bounded functions on A.

Theorem 8.8. Let f, g : A→ R be bounded and λ ∈ R, then we have

(i) ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0.

(ii) ‖λf‖ = |λ|‖f‖

(iii) ‖f + g‖ ≤ ‖f‖+ ‖g‖

We will leave this as an exercise. We remark that the example of norms
we encounter typically in linear algebra are connected with an inner product.
The sup norm is an example of a norm which is not connected to an inner
product.

In terms of the norm the condition that sequence of functions (fn), fn :
[a, b]→ R converges uniformly to f , can be expressed as

lim
n→∞

‖fn − f‖[a,b] = 0 .

Definition 8.9. We denote by C([a, b]) the set of all (uniformly) continuous
functions on [a, b]. We say that (fn), where fn ∈ C([a, b]) for all n ∈ N, is a
Cauchy sequence in C([a, b]) if for any ε > 0 there exist a N ∈ N such that

‖fn − fm‖[a,b] ≤ ε for all m,n > N .

Uniformly convergent sequences are always Cauchy.

Proposition 8.10. Let (fn) be a sequence of functions in C([a, b]) and
f ∈ C([a, b]) such that limn→∞‖fn − f‖[a,b] = 0. In this case (fn) is a
Cauchy sequence.
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Proof. Let ε > 0 and choose N ∈ N such that if n ≥ N then ‖fn − f‖[a,b] ≤
ε/2. If n,m ≥ N then using part (iii) from the previous theorem (triangle
inequality)

‖fn − fm‖[a,b] = ‖fn − f + f − fm‖[a,b] ≤ ‖fn − f‖[a,b] + ‖f − fm‖[a,b] ≤ ε.

Cauchy sequences are of great importance in Analysis. It is always true
that convergent sequences are Cauchy and if a set has the property that all
Cauchy sequences are convergent with the limit contained in the set, it is
called complete. An example is the set of real numbers R. Another example
is the set of continuous functions on [a, b].

Theorem 8.11. Let (fn) be a Cauchy sequence in C([a, b]), then there exists
an f ∈ C([a, b]) such that limn→∞ fn = f .

Proof. Let us first fix an x ∈ [a, b], then |fn(x) − fm(x)| ≤ ‖fn − fm‖[a,b],
hence the sequence of real numbers (fn(x)) is a Cauchy sequence, and there-
fore there exist a limit f(x). This limit exist for any x ∈ [a, b] and so there
exist a function f : [a, b]→ R such that limn→∞ fn = f pointwise.

Let us now assume that the convergence is not uniform, i.e, there exist
a ε > 0 and a sequence xn ∈ [a, b] such that

|fn(xn)− f(xn)| ≥ 2ε .

Since (fn) is a Cauchy sequence there exists an N ∈ N such that |fn(xn)−
fm(xn)| ≤ ε for all m,n > N , and let us fix one such n. Now by the triangle
inequality |fn(xn)−f(xn)| ≤ |fn(xn)−fm(xn)|+ |fm(xn)−f(xn)| and hence

|fn(xn)− fm(xn)| ≥ 2ε− |fm(xn)− f(xn)| .

Since fm converges pointwise to f , there exist an m > N such that |fm(xn)−
f(xn)| ≤ ε, and therefore

|fn(xn)− fm(xn)| ≥ ε ,

which contradicts the fact that fn is a Cauchy sequence. So the convergence
must be uniform and then by Weierstrass’ Theorem f ∈ C([a, b]).

The importance of results of this type comes from the fact that in math-
ematics, both in pure and in applied areas, one often constructs solutions to
a problem in an iterative way, starting with a first guess f1 then improving
it to second guess f2 and so on. In this way one creates a sequence of ap-
proximate solutions fn and what one knows usually from the construction
is that the difference between them will get smaller and smaller with larger
n, which is the Cauchy property. The limit, if it exists, is then supposed to
be the solution to the problem, and a Theorem of the type above tells us
that such a limit exists and has good properties.
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