# Numerical evidence for the Birch-Swinnerton-Dyer conjecture 

John Cremona

University of Warwick

## BSD conference, Cambridge <br> 4 May 2011

## Plan

(1) Introduction and statement of the Birch-Swinnerton-Dyer (BSD) conjectures for elliptic curves over $\mathbb{Q}$
(2) Numerical evidence and examples

## Plan

(1) Introduction and statement of the Birch-Swinnerton-Dyer (BSD) conjectures for elliptic curves over $\mathbb{Q}$
(2) Numerical evidence ${ }^{1}$ and examples

[^0]
## Introduction

- I will not talk about the history of the conjecture, leaving that to the afternoon's distinguished speakers!


## Introduction

- I will not talk about the history of the conjecture, leaving that to the afternoon's distinguished speakers!
- To set the scene for the rest of the conference, I will first explain in some detail exactly what the BSD conjectures state, for elliptic curves defined over $\mathbb{Q}$, distinguishing between the First (or "weak") and the Second (or "strong") Conjectures.


## Introduction

- I will not talk about the history of the conjecture, leaving that to the afternoon's distinguished speakers!
- To set the scene for the rest of the conference, I will first explain in some detail exactly what the BSD conjectures state, for elliptic curves defined over $\mathbb{Q}$, distinguishing between the First (or "weak") and the Second (or "strong") Conjectures.
- In the second part of the talk, I will discuss how the conjectures might be verified for individual curves, or for families of curves, using both theoretical and computational methods.


## Introduction

- I will not talk about the history of the conjecture, leaving that to the afternoon's distinguished speakers!
- To set the scene for the rest of the conference, I will first explain in some detail exactly what the BSD conjectures state, for elliptic curves defined over $\mathbb{Q}$, distinguishing between the First (or "weak") and the Second (or "strong") Conjectures.
- In the second part of the talk, I will discuss how the conjectures might be verified for individual curves, or for families of curves, using both theoretical and computational methods.
- Conclusions:
(1) The full BSD conjecture is proved for many elliptic curves, all of rank 0 or 1 and all but a finite number with CM.
(2) For elliptic curves of higher rank, even numerical verification is impossible for the strong conjecture.
(3) Nevertheless the numbers are compelling!


## Elliptic curves

- An elliptic curve defined over the field $K$ is
- a smooth projective curve $E$, of genus 1 , defined over $K$, together with
- a $K$-rational point, $\mathcal{O}_{E}$.


## Elliptic curves

- An elliptic curve defined over the field $K$ is
- a smooth projective curve $E$, of genus 1 , defined over $K$, together with
- a $K$-rational point, $\mathcal{O}_{E}$.
- Elliptic curves all have smooth plane cubic models which are the projective completion of affine curves defined by Weierstrass Equations

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{1}, \ldots, a_{6} \in K$ satisfying $\Delta_{E}=\Delta\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right) \neq 0$.

## Elliptic curves

- An elliptic curve defined over the field $K$ is
- a smooth projective curve $E$, of genus 1 , defined over $K$, together with
- a $K$-rational point, $\mathcal{O}_{E}$.
- Elliptic curves all have smooth plane cubic models which are the projective completion of affine curves defined by Weierstrass Equations

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{1}, \ldots, a_{6} \in K$ satisfying $\Delta_{E}=\Delta\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right) \neq 0$.

- The distinguished point $\mathcal{O}_{E}$ is the (unique) point $[0: 1: 0]$ at infinity on this model.


## Elliptic curves

- An elliptic curve defined over the field $K$ is
- a smooth projective curve $E$, of genus 1, defined over $K$, together with
- a $K$-rational point, $\mathcal{O}_{E}$.
- Elliptic curves all have smooth plane cubic models which are the projective completion of affine curves defined by Weierstrass Equations

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{1}, \ldots, a_{6} \in K$ satisfying $\Delta_{E}=\Delta\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right) \neq 0$.

- The distinguished point $\mathcal{O}_{E}$ is the (unique) point $[0: 1: 0]$ at infinity on this model.
- For short we denote the above equation by $\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]$.


## The group of points of an elliptic curve

- Let $E / K$ be an elliptic curve. For any field $L \supseteq K$ the set of $L$-rational points, $E(L)$, has the structure of an Abelian group with identity $\mathcal{O}_{E}$.


## The group of points of an elliptic curve

- Let $E / K$ be an elliptic curve. For any field $L \supseteq K$ the set of $L$-rational points, $E(L)$, has the structure of an Abelian group with identity $\mathcal{O}_{E}$.
- In the Weierstrass model, the group law is defined by the classical tangent-chord method; three points $P, Q, R$ add to $\mathcal{O}_{E}$ if and only if they are the three intersection points of $E$ with a (projective) line, counting multiplicities.


## The group of points of an elliptic curve

- Let $E / K$ be an elliptic curve. For any field $L \supseteq K$ the set of $L$-rational points, $E(L)$, has the structure of an Abelian group with identity $\mathcal{O}_{E}$.
- In the Weierstrass model, the group law is defined by the classical tangent-chord method; three points $P, Q, R$ add to $\mathcal{O}_{E}$ if and only if they are the three intersection points of $E$ with a (projective) line, counting multiplicities.
- Some basic questions are:
(1) what kind of a group is $E(K)$ ?
(2) how does $E(K)$ vary (for fixed $K$ )?
(3) can we determine $E(K)$ (for given $E$ )?


## The group of points of an elliptic curve

- Let $E / K$ be an elliptic curve. For any field $L \supseteq K$ the set of $L$-rational points, $E(L)$, has the structure of an Abelian group with identity $\mathcal{O}_{E}$.
- In the Weierstrass model, the group law is defined by the classical tangent-chord method; three points $P, Q, R$ add to $\mathcal{O}_{E}$ if and only if they are the three intersection points of $E$ with a (projective) line, counting multiplicities.
- Some basic questions are:
(1) what kind of a group is $E(K)$ ?
(2) how does $E(K)$ vary (for fixed $K$ )?
(3) can we determine $E(K)$ (for given $E$ )?

From now on we will take $K=\mathbb{Q}$.

## Elliptic curves over $\mathbb{Q}$

- Mordell proved in 1922 that for every elliptic curve $E / \mathbb{Q}$ the group $E(\mathbb{Q})$ is finitely-generated.


## Elliptic curves over $\mathbb{Q}$

- Mordell proved in 1922 that for every elliptic curve $E / \mathbb{Q}$ the group $E(\mathbb{Q})$ is finitely-generated.
- This was later generalised to elliptic curves over number fields, and beyond.


## Elliptic curves over $\mathbb{Q}$

- Mordell proved in 1922 that for every elliptic curve $E / \mathbb{Q}$ the group $E(\mathbb{Q})$ is finitely-generated.
- This was later generalised to elliptic curves over number fields, and beyond.
- This essentially answers our first question:

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r(E)} \oplus T
$$

where the $\operatorname{rank} r(E) \geq 0$, and $T$ is a finite group.

## Elliptic curves over $\mathbb{Q}$

- Mordell proved in 1922 that for every elliptic curve $E / \mathbb{Q}$ the group $E(\mathbb{Q})$ is finitely-generated.
- This was later generalised to elliptic curves over number fields, and beyond.
- This essentially answers our first question:

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r(E)} \oplus T
$$

where the rank $r(E) \geq 0$, and $T$ is a finite group.

- For the second question (over $K=\mathbb{Q}$ ), we know
- $|T| \leq 16$ (Mazur, 1977)
- there exists $E$ with $r(E) \geq 28$ (Elkies, 2006)


## Elliptic curves over $\mathbb{Q}$

- Mordell proved in 1922 that for every elliptic curve $E / \mathbb{Q}$ the group $E(\mathbb{Q})$ is finitely-generated.
- This was later generalised to elliptic curves over number fields, and beyond.
- This essentially answers our first question:

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r(E)} \oplus T
$$

where the rank $r(E) \geq 0$, and $T$ is a finite group.

- For the second question (over $K=\mathbb{Q}$ ), we know
- $|T| \leq 16$ (Mazur, 1977)
- there exists $E$ with $r(E) \geq 28$ (Elkies, 2006)
- BSD predicts the value of the "arithmetic rank" (or Mordell-Weil rank) $r(E)$ in terms of the $L$-function attached to $E$.


## The $L$-function of $E / \mathbb{Q}$

- By suitable scaling we may assume that the equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defining an elliptic curve $E / \mathbb{Q}$ is integral ( $\operatorname{all} a_{i} \in \mathbb{Z}$ ) and minimal $\left(\left|\Delta_{E}\right|\right.$ minimal).

## The $L$-function of $E / \mathbb{Q}$

- By suitable scaling we may assume that the equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defining an elliptic curve $E / \mathbb{Q}$ is integral (all $a_{i} \in \mathbb{Z}$ ) and minimal ( $\left|\Delta_{E}\right|$ minimal).

- Let $N_{E}$ denote the conductor of $E$ : a positive integer divisible by the same primes as the minimal discriminant $\Delta_{E}$.


## The $L$-function of $E / \mathbb{Q}$

- By suitable scaling we may assume that the equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6},
$$

defining an elliptic curve $E / \mathbb{Q}$ is integral (all $a_{i} \in \mathbb{Z}$ ) and minimal ( $\left|\Delta_{E}\right|$ minimal).

- Let $N_{E}$ denote the conductor of $E$ : a positive integer divisible by the same primes as the minimal discriminant $\Delta_{E}$. [Computed by Tate's algorithm.]


## The $L$-function of $E / \mathbb{Q}$

- By suitable scaling we may assume that the equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defining an elliptic curve $E / \mathbb{Q}$ is integral (all $a_{i} \in \mathbb{Z}$ ) and minimal ( $\left|\Delta_{E}\right|$ minimal).

- Let $N_{E}$ denote the conductor of $E$ : a positive integer divisible by the same primes as the minimal discriminant $\Delta_{E}$. [Computed by Tate's algorithm.]
- The $L$-function of $E$ is a function of the complex variable $s$ defined by the following Euler product:

$$
L(E, s)=\prod_{p \nmid N_{E}}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \cdot \prod_{p \mid N_{E}}\left(1-a_{p} p^{-s}\right)^{-1}
$$

where $a_{p}=1+p-\# E\left(\mathbb{F}_{p}\right)$.

## The $L$-function of $E / \mathbb{Q}$ (continued)

$$
L(E, s)=\prod_{p \nmid N_{E}}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \cdot \prod_{p \mid N_{E}}\left(1-a_{p} p^{-s}\right)^{-1}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Since $\left|a_{p}\right| \leq 2 \sqrt{p}$ for all $p \nmid N_{E}$ (Hasse), the series converges in the half-plane $\Re(s)>3 / 2$.


## The $L$-function of $E / \mathbb{Q}$ (continued)

$$
L(E, s)=\prod_{p \nmid N_{E}}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \cdot \prod_{p \mid N_{E}}\left(1-a_{p} p^{-s}\right)^{-1}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Since $\left|a_{p}\right| \leq 2 \sqrt{p}$ for all $p \nmid N_{E}$ (Hasse), the series converges in the half-plane $\Re(s)>3 / 2$.
- When $p \mid N_{E}$ we have $a_{p}=+1,-1,0$ according to whether $E$ has split or non-split multiplicative, or additive reduction at $p$.


## The $L$-function of $E / \mathbb{Q}$ (continued)

$$
L(E, s)=\prod_{p \nmid N_{E}}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \cdot \prod_{p \mid N_{E}}\left(1-a_{p} p^{-s}\right)^{-1}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Since $\left|a_{p}\right| \leq 2 \sqrt{p}$ for all $p \nmid N_{E}$ (Hasse), the series converges in the half-plane $\Re(s)>3 / 2$.
- When $p \mid N_{E}$ we have $a_{p}=+1,-1,0$ according to whether $E$ has split or non-split multiplicative, or additive reduction at $p$.
- First consequence of modularity: $L(E, s)$ has analytic continuation to all of $\mathbb{C}$, and satisfies a functional equation relating $L(E, s)$ and $L(E, 2-s)$ :

$$
\Lambda_{E}(s):=N_{E}^{s / 2}(2 \pi)^{-s} \Gamma(s) L(E, s)=w(E / \mathbb{Q}) \Lambda_{E}(2-s)
$$

## The $L$-function of $E / \mathbb{Q}$ (continued)

$$
L(E, s)=\prod_{p \nmid N_{E}}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \cdot \prod_{p \mid N_{E}}\left(1-a_{p} p^{-s}\right)^{-1}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Since $\left|a_{p}\right| \leq 2 \sqrt{p}$ for all $p \nmid N_{E}$ (Hasse), the series converges in the half-plane $\Re(s)>3 / 2$.
- When $p \mid N_{E}$ we have $a_{p}=+1,-1,0$ according to whether $E$ has split or non-split multiplicative, or additive reduction at $p$.
- First consequence of modularity: $L(E, s)$ has analytic continuation to all of $\mathbb{C}$, and satisfies a functional equation relating $L(E, s)$ and $L(E, 2-s)$ :

$$
\Lambda_{E}(s):=N_{E}^{s / 2}(2 \pi)^{-s} \Gamma(s) L(E, s)=w(E / \mathbb{Q}) \Lambda_{E}(2-s)
$$

where root number $w(E / \mathbb{Q})= \pm 1$ is the sign of the functional equation (SFE) of $E$.

## The analytic rank

- In particular, it makes sense to define the analytic rank $r_{a n}(E)$ :

$$
r_{a n}(E):=\operatorname{ord}_{s=1} L(E, s) \quad(\geq 0)
$$

## The analytic rank

- In particular, it makes sense to define the analytic rank $r_{a n}(E)$ :

$$
r_{a n}(E):=\operatorname{ord}_{s=1} L(E, s) \quad(\geq 0)
$$

- The SFE is $w(E / \mathbb{Q})=(-1)^{r_{a n}(E)}$; in practice this means that the parity of $r_{a n}(E)$ is easy to determine.


## The analytic rank

- In particular, it makes sense to define the analytic rank $r_{a n}(E)$ :

$$
r_{a n}(E):=\operatorname{ord}_{s=1} L(E, s) \quad(\geq 0)
$$

- The SFE is $w(E / \mathbb{Q})=(-1)^{r_{a n}(E)}$; in practice this means that the parity of $r_{a n}(E)$ is easy to determine.
- $r_{a n}(E)=0 \Longleftrightarrow L(E, 1) \neq 0$.


## The analytic rank

- In particular, it makes sense to define the analytic rank $r_{a n}(E)$ :

$$
r_{a n}(E):=\operatorname{ord}_{s=1} L(E, s) \quad(\geq 0)
$$

- The SFE is $w(E / \mathbb{Q})=(-1)^{r_{a n}(E)}$; in practice this means that the parity of $r_{a n}(E)$ is easy to determine.
- $r_{a n}(E)=0 \Longleftrightarrow L(E, 1) \neq 0$.
- Determining the exact value of $r_{a n}(E)$ is currently only possible when $r_{a n}(E) \leq 3$ ! More on this later.


## The analytic rank

- In particular, it makes sense to define the analytic rank $r_{a n}(E)$ :

$$
r_{a n}(E):=\operatorname{ord}_{s=1} L(E, s) \quad(\geq 0)
$$

- The SFE is $w(E / \mathbb{Q})=(-1)^{r_{a n}(E)}$; in practice this means that the parity of $r_{a n}(E)$ is easy to determine.
- $r_{a n}(E)=0 \Longleftrightarrow L(E, 1) \neq 0$.
- Determining the exact value of $r_{a n}(E)$ is currently only possible when $r_{a n}(E) \leq 3$ ! More on this later.
- How are the arithmetic rank $r(E)$ and the analytic rank $r_{a n}(E)$ related?


## The analytic rank

- In particular, it makes sense to define the analytic rank $r_{a n}(E)$ :

$$
r_{a n}(E):=\operatorname{ord}_{s=1} L(E, s) \quad(\geq 0)
$$

- The SFE is $w(E / \mathbb{Q})=(-1)^{r_{a n}(E)}$; in practice this means that the parity of $r_{a n}(E)$ is easy to determine.
- $r_{a n}(E)=0 \Longleftrightarrow L(E, 1) \neq 0$.
- Determining the exact value of $r_{a n}(E)$ is currently only possible when $r_{a n}(E) \leq 3$ ! More on this later.
- How are the arithmetic rank $r(E)$ and the analytic rank $r_{a n}(E)$ related?
That is the million-dollar question!


## The first Birch-Swinnerton-Dyer conjecture for elliptic curves over $\mathbb{Q}$

Conjecture (Birch and Swinnerton-Dyer, 1963)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then the arithmetic and analytic ranks of $E$ are equal:

$$
r(E)=r_{a n}(E)
$$

## The first Birch-Swinnerton-Dyer conjecture for elliptic curves over $\mathbb{Q}$

Conjecture (Birch and Swinnerton-Dyer, 1963)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then the arithmetic and analytic ranks of $E$ are equal:

$$
r(E)=r_{a n}(E)
$$

For example, this implies that $E(\mathbb{Q})$ is infinite if and only $L(E, 1)=0$.

## The first Birch-Swinnerton-Dyer conjecture for elliptic curves over $\mathbb{Q}$

Conjecture (Birch and Swinnerton-Dyer, 1963)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then the arithmetic and analytic ranks of $E$ are equal:

$$
r(E)=r_{a n}(E)
$$

For example, this implies that $E(\mathbb{Q})$ is infinite if and only $L(E, 1)=0$.
We'll see later how to verify this conjecture for a given curve: though this is not possible in general, even in principle, for all elliptic curves given the present state of knowledge!

## What's known?

- To date, here is what we know about the first conjecture:

Theorem (Kolyvagin; Murty \& Murty; Bump, Friedberg \& Hoffstein; Coates \& Wiles; Gross \& Zagier)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then

$$
r_{a n}(E) \leq 1 \Longrightarrow r(E)=r_{a n}(E)
$$

## What's known?

- To date, here is what we know about the first conjecture:

Theorem (Kolyvagin; Murty \& Murty; Bump, Friedberg \& Hoffstein; Coates \& Wiles; Gross \& Zagier)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then

$$
r_{a n}(E) \leq 1 \Longrightarrow r(E)=r_{a n}(E)
$$

- We will see later that when $r_{a n}(E) \leq 3$ it is possible (both in principle, and in practice) to determine the value of $r_{a n}(E)$.


## What's known?

- To date, here is what we know about the first conjecture:

Theorem (Kolyvagin; Murty \& Murty; Bump, Friedberg \& Hoffstein;
Coates \& Wiles; Gross \& Zagier)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then

$$
r_{a n}(E) \leq 1 \Longrightarrow r(E)=r_{a n}(E)
$$

- We will see later that when $r_{a n}(E) \leq 3$ it is possible (both in principle, and in practice) to determine the value of $r_{a n}(E)$.
- We can often also determine $r(E)$, and hence verify the conjecture in (many) individual cases when $r_{a n}(E) \leq 3$.


## What's known?

- To date, here is what we know about the first conjecture:

Theorem (Kolyvagin; Murty \& Murty; Bump, Friedberg \& Hoffstein; Coates \& Wiles; Gross \& Zagier)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then

$$
r_{a n}(E) \leq 1 \Longrightarrow r(E)=r_{a n}(E)
$$

- We will see later that when $r_{a n}(E) \leq 3$ it is possible (both in principle, and in practice) to determine the value of $r_{a n}(E)$.
- We can often also determine $r(E)$, and hence verify the conjecture in (many) individual cases when $r_{a n}(E) \leq 3$.
- Further results are known about the conjecture "modulo 2 ".


## The Parity conjecture

- Reducing BSD modulo 2 we obtain

Conjecture (The Parity Conjecture)

$$
r(E) \equiv r_{a n}(E) \quad(\bmod 2) . \quad \text { Equivalently, } \quad w(E / \mathbb{Q})=(-1)^{r(E)} .
$$

## The Parity conjecture

- Reducing BSD modulo 2 we obtain

Conjecture (The Parity Conjecture)
$r(E) \equiv r_{\text {an }}(E) \quad(\bmod 2) . \quad$ Equivalently, $\quad w(E / \mathbb{Q})=(-1)^{r(E)}$.
This is much easier to verify for individual curves (by descent). But that is hardly necessary, since ...

## The Parity conjecture

- Reducing BSD modulo 2 we obtain

Conjecture (The Parity Conjecture)

$$
r(E) \equiv r_{a n}(E) \quad(\bmod 2) . \quad \text { Equivalently, } \quad w(E / \mathbb{Q})=(-1)^{r(E)}
$$

This is much easier to verify for individual curves (by descent). But that is hardly necessary, since ...

- Dokchitser \& Dokchitser have proved many strong results in the direction of the parity conjecture; over number fields, they show that it follows from finiteness of the Tate-Shafarevich group W.


## The Parity conjecture

- Reducing BSD modulo 2 we obtain

Conjecture (The Parity Conjecture)

$$
r(E) \equiv r_{a n}(E) \quad(\bmod 2) . \quad \text { Equivalently, } \quad w(E / \mathbb{Q})=(-1)^{r(E)}
$$

This is much easier to verify for individual curves (by descent). But that is hardly necessary, since ...

- Dokchitser \& Dokchitser have proved many strong results in the direction of the parity conjecture; over number fields, they show that it follows from finiteness of the Tate-Shafarevich group $W$.
- Over $\mathbb{Q}$ there is a stronger result:

Theorem (T. \& V. Dokchitser 2009)
If the p-primary part of $\amalg(E / \mathbb{Q})$ is finite for at least one prime $p$ then the parity conjecture for $E / \mathbb{Q}$ holds.

## The refined conjecture

- The refined, or strong form of BSD predicts the "special value" of $L(E, s)$ at $s=1$.


## The refined conjecture

- The refined, or strong form of BSD predicts the "special value" of $L(E, s)$ at $s=1$.
- This is the nonzero number $c_{E}$ such that (with $r=r_{a n}(E)$ )

$$
L(E, s) \sim c_{E}(s-1)^{r} \quad \text { as } s \rightarrow 1
$$

equivalently,

$$
c_{E}=\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{r}}=\frac{1}{r!} L^{(r)}(E, 1) .
$$

## The refined conjecture

- The refined, or strong form of BSD predicts the "special value" of $L(E, s)$ at $s=1$.
- This is the nonzero number $c_{E}$ such that (with $r=r_{a n}(E)$ )

$$
L(E, s) \sim c_{E}(s-1)^{r} \quad \text { as } s \rightarrow 1
$$

equivalently,

$$
c_{E}=\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{r}}=\frac{1}{r!} L^{(r)}(E, 1) .
$$

- The conjectured formula for $c_{E}$ involves many other quantities associated to $E / \mathbb{Q}$, including the order of the Tate-Shafarevich group $\amalg(E / \mathbb{Q})$ - whose finiteness had been conjectured around 1958-59 by Shafarevitch, Tate, Cassels, Birch and Swinnerton-Dyer, but is not known in general.


## The second Birch-Swinnerton-Dyer conjecture for elliptic curves over $\mathbb{Q}$

Conjecture (Birch and Swinnerton-Dyer, 1963)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then
(1) $r(E)=r_{a n}(E)$;
(2) $\amalg(E / \mathbb{Q})$ is finite, and

$$
c_{E}=\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{r(E)}}=\frac{\Omega(E) \operatorname{Reg}(E)\left(\prod_{p} c_{p}\right)|\amalg(E / \mathbb{Q})|}{\left|E(\mathbb{Q})_{\text {tors }}\right|^{2}} .
$$

## The second Birch-Swinnerton-Dyer conjecture for elliptic curves over $\mathbb{Q}$

Conjecture (Birch and Swinnerton-Dyer, 1963)
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. Then
(1) $r(E)=r_{a n}(E)$;
(2) $\amalg(E / \mathbb{Q})$ is finite, and

$$
c_{E}=\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{r(E)}}=\frac{\Omega(E) \operatorname{Reg}(E)\left(\prod_{p} c_{p}\right)|\amalg(E / \mathbb{Q})|}{\left|E(\mathbb{Q})_{\text {tors }}\right|^{2}} .
$$

We will next explain what the various factors on the right-hand side are.

## Invariants associated to $E(\mathbb{R})$ and $E\left(\mathbb{Q}_{p}\right)$

- $\Omega(E)$ is the real period of $E$ multiplied by the number of components of $E(\mathbb{R})$ ( $=1$ or 2 ).


## Invariants associated to $E(\mathbb{R})$ and $E\left(\mathbb{Q}_{p}\right)$

- $\Omega(E)$ is the real period of $E$ multiplied by the number of components of $E(\mathbb{R})$ ( $=1$ or 2 ). Equivalently, $\Omega(E)=\int_{E(\mathbb{R})} \omega_{E}$ where (in terms of a minimal Weierstrass model of $E$ ), $\omega_{E}$ is the differential

$$
\omega_{E}=\frac{d x}{2 y+a_{1} x+a_{3}} .
$$

## Invariants associated to $E(\mathbb{R})$ and $E\left(\mathbb{Q}_{p}\right)$

- $\Omega(E)$ is the real period of $E$ multiplied by the number of components of $E(\mathbb{R})$ ( $=1$ or 2 ). Equivalently, $\Omega(E)=\int_{E(\mathbb{R})} \omega_{E}$ where (in terms of a minimal Weierstrass model of $E$ ), $\omega_{E}$ is the differential

$$
\omega_{E}=\frac{d x}{2 y+a_{1} x+a_{3}}
$$

This is easy to compute to any desired precision using the doubly exponential AGM algorithm.

## Invariants associated to $E(\mathbb{R})$ and $E\left(\mathbb{Q}_{p}\right)$

- $\Omega(E)$ is the real period of $E$ multiplied by the number of components of $E(\mathbb{R})$ ( $=1$ or 2 ).
Equivalently, $\Omega(E)=\int_{E(\mathbb{R})} \omega_{E}$ where (in terms of a minimal Weierstrass model of $E$ ), $\omega_{E}$ is the differential

$$
\omega_{E}=\frac{d x}{2 y+a_{1} x+a_{3}}
$$

This is easy to compute to any desired precision using the doubly exponential AGM algorithm.

- For each prime $p, c_{p}$ is the Tamagawa number $\left[E\left(\mathbb{Q}_{p}\right): E^{0}\left(\mathbb{Q}_{p}\right)\right]$, that is, the order of the group of components of $E\left(\mathbb{Q}_{p}\right)$; this is 1 for all primes of good reduction.


## Invariants associated to $E(\mathbb{R})$ and $E\left(\mathbb{Q}_{p}\right)$

- $\Omega(E)$ is the real period of $E$ multiplied by the number of components of $E(\mathbb{R})$ ( $=1$ or 2 ).
Equivalently, $\Omega(E)=\int_{E(\mathbb{R})} \omega_{E}$ where (in terms of a minimal Weierstrass model of $E$ ), $\omega_{E}$ is the differential

$$
\omega_{E}=\frac{d x}{2 y+a_{1} x+a_{3}} .
$$

This is easy to compute to any desired precision using the doubly exponential AGM algorithm.

- For each prime $p, c_{p}$ is the Tamagawa number $\left[E\left(\mathbb{Q}_{p}\right): E^{0}\left(\mathbb{Q}_{p}\right)\right]$, that is, the order of the group of components of $E\left(\mathbb{Q}_{p}\right)$; this is 1 for all primes of good reduction. These are easy to compute using Tate's algorithm (again).


## Invariants associated to $E(\mathbb{Q})$

- $\operatorname{Reg}(E)$ is the regulator of $E$, which is the determinant of the height pairing. This can be computed to any desired precision provided that generators for the group $E(\mathbb{Q})$ are known.


## Invariants associated to $E(\mathbb{Q})$

- $\operatorname{Reg}(E)$ is the regulator of $E$, which is the determinant of the height pairing. This can be computed to any desired precision provided that generators for the group $E(\mathbb{Q})$ are known.
- Finding the order of the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ is no problem.


## Invariants associated to $E(\mathbb{Q})$

- $\operatorname{Reg}(E)$ is the regulator of $E$, which is the determinant of the height pairing. This can be computed to any desired precision provided that generators for the group $E(\mathbb{Q})$ are known.
- Finding the order of the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ is no problem.
- $\amalg(E / \mathbb{Q})$ is defined as

$$
\amalg(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

## Invariants associated to $E(\mathbb{Q})$

- $\operatorname{Reg}(E)$ is the regulator of $E$, which is the determinant of the height pairing. This can be computed to any desired precision provided that generators for the group $E(\mathbb{Q})$ are known.
- Finding the order of the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ is no problem.
- $\amalg(E / \mathbb{Q})$ is defined as

$$
\amalg(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

$\amalg(E / \mathbb{Q})$ consists of twists of $E$, up to isomorphism, which have rational points everywhere locally.

## Invariants associated to $E(\mathbb{Q})$

- $\operatorname{Reg}(E)$ is the regulator of $E$, which is the determinant of the height pairing. This can be computed to any desired precision provided that generators for the group $E(\mathbb{Q})$ are known.
- Finding the order of the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ is no problem.
- $\amalg(E / \mathbb{Q})$ is defined as

$$
\amalg(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

$\amalg(E / \mathbb{Q})$ consists of twists of $E$, up to isomorphism, which have rational points everywhere locally.
It is the most mysterious object in this theory, and very hard to get one's hands on, or even to write down elements of.

## The Tate-Shafarevich group

$$
Ш(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

- $\amalg(E / \mathbb{Q})$ is a torsion abelian group.


## The Tate-Shafarevich group

$$
Ш(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

- $\amalg(E / \mathbb{Q})$ is a torsion abelian group.
- Finding $|\amalg(E / \mathbb{Q})|$ computationally is impossible in general!


## The Tate-Shafarevich group

$$
Ш(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

- $\amalg(E / \mathbb{Q})$ is a torsion abelian group.
- Finding $|\amalg(E / \mathbb{Q})|$ computationally is impossible in general!
- Let $\amalg(p)=\amalg(E / \mathbb{Q})(p)$ denote the $p$-primary part of $\amalg(E / \mathbb{Q})$.


## The Tate-Shafarevich group

$$
Ш(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

- $\amalg(E / \mathbb{Q})$ is a torsion abelian group.
- Finding $|\amalg(E / \mathbb{Q})|$ computationally is impossible in general!
- Let $\amalg(p)=\amalg(E / \mathbb{Q})(p)$ denote the $p$-primary part of $\amalg(E / \mathbb{Q})$. Finding $|\amalg(E / \mathbb{Q})|$ involves finding $|\amalg(p)|$ for all primes $p$. In practice, what one can hope to do is to show that $\amalg(p)$ is trivial for $p$ outside some finite set and then use $p$-descent and $p$-adic methods to determine $|\amalg(p)|$ for the remaining primes.


## The Tate-Shafarevich group

$$
Ш(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

- $\amalg(E / \mathbb{Q})$ is a torsion abelian group.
- Finding $|\amalg(E / \mathbb{Q})|$ computationally is impossible in general!
- Let $\amalg(p)=\amalg(E / \mathbb{Q})(p)$ denote the $p$-primary part of $\amalg(E / \mathbb{Q})$. Finding $|\amalg(E / \mathbb{Q})|$ involves finding $|\amalg(p)|$ for all primes $p$. In practice, what one can hope to do is to show that $\amalg(p)$ is trivial for $p$ outside some finite set and then use $p$-descent and $p$-adic methods to determine $|\amalg(p)|$ for the remaining primes. The first of these steps is possible (currently) only when $r_{a n}(E) \leq 1$.


## The Tate-Shafarevich group

$$
Ш(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E\right) \rightarrow \prod_{p} H^{1}\left(G_{\mathbb{Q}_{p}}, E\right)\right) .
$$

- $\amalg(E / \mathbb{Q})$ is a torsion abelian group.
- Finding $|\amalg(E / \mathbb{Q})|$ computationally is impossible in general!
- Let $\amalg(p)=\amalg(E / \mathbb{Q})(p)$ denote the $p$-primary part of $\amalg(E / \mathbb{Q})$. Finding $|\amalg(E / \mathbb{Q})|$ involves finding $|\amalg(p)|$ for all primes $p$. In practice, what one can hope to do is to show that $\amalg(p)$ is trivial for $p$ outside some finite set and then use $p$-descent and $p$-adic methods to determine $|\amalg(p)|$ for the remaining primes. The first of these steps is possible (currently) only when $r_{a n}(E) \leq 1$.
The second is often possible for individual primes, when $r_{a n}(E) \geq 2$.


## Verifying the conjecture

There are serious problems involved in verifying the conjecture for specific curves (let alone for infinite families, or for all curves).

- The strong conjecture involves the order of a group $\amalg(E / \mathbb{Q})$ which is only known to be finite when $r_{a n}(E) \leq 1$.


## Verifying the conjecture

There are serious problems involved in verifying the conjecture for specific curves (let alone for infinite families, or for all curves).

- The strong conjecture involves the order of a group $\amalg(E / \mathbb{Q})$ which is only known to be finite when $r_{a n}(E) \leq 1$.
But the situation is better than when Tate made his famous comment about the BSD conjecture relating the order of a group not known to be finite with the value of a function at a point where it is not known to be defined, since we do now know that $L(E, s)$ is defined for all $s \in \mathbb{C}$ !


## Verifying the conjecture

There are serious problems involved in verifying the conjecture for specific curves (let alone for infinite families, or for all curves).

- The strong conjecture involves the order of a group $\amalg(E / \mathbb{Q})$ which is only known to be finite when $r_{a n}(E) \leq 1$.
But the situation is better than when Tate made his famous comment about the BSD conjecture relating the order of a group not known to be finite with the value of a function at a point where it is not known to be defined, since we do now know that $L(E, s)$ is defined for all $s \in \mathbb{C}$ !
- However, the theorem of Kolyvagin et al. also states that $\amalg(E / \mathbb{Q})$ is finite when $r_{a n}(E) \leq 1$.


## Verifying the conjecture

There are serious problems involved in verifying the conjecture for specific curves (let alone for infinite families, or for all curves).

- The strong conjecture involves the order of a group $\amalg(E / \mathbb{Q})$ which is only known to be finite when $r_{a n}(E) \leq 1$.
But the situation is better than when Tate made his famous comment about the BSD conjecture relating the order of a group not known to be finite with the value of a function at a point where it is not known to be defined, since we do now know that $L(E, s)$ is defined for all $s \in \mathbb{C}$ !
- However, the theorem of Kolyvagin et al. also states that $\amalg(E / \mathbb{Q})$ is finite when $r_{a n}(E) \leq 1$. (The statement is more precise, as we will see later.)


## Verifying the conjecture

There are serious problems involved in verifying the conjecture for specific curves (let alone for infinite families, or for all curves).

- The strong conjecture involves the order of a group $\amalg(E / \mathbb{Q})$ which is only known to be finite when $r_{a n}(E) \leq 1$. But the situation is better than when Tate made his famous comment about the BSD conjecture relating the order of a group not known to be finite with the value of a function at a point where it is not known to be defined, since we do now know that $L(E, s)$ is defined for all $s \in \mathbb{C}$ !
- However, the theorem of Kolyvagin et al. also states that $\amalg(E / \mathbb{Q})$ is finite when $r_{a n}(E) \leq 1$. (The statement is more precise, as we will see later.)
- For no curve of analytic rank $\geq 2$ is $\amalg$ known to be finite; so we have no hope of verifying BSD II in such cases.


## Verifying the conjecture

There are serious problems involved in verifying the conjecture for specific curves (let alone for infinite families, or for all curves).

- The strong conjecture involves the order of a group $\amalg(E / \mathbb{Q})$ which is only known to be finite when $r_{a n}(E) \leq 1$. But the situation is better than when Tate made his famous comment about the BSD conjecture relating the order of a group not known to be finite with the value of a function at a point where it is not known to be defined, since we do now know that $L(E, s)$ is defined for all $s \in \mathbb{C}$ !
- However, the theorem of Kolyvagin et al. also states that $\amalg(E / \mathbb{Q})$ is finite when $r_{a n}(E) \leq 1$. (The statement is more precise, as we will see later.)
- For no curve of analytic rank $\geq 2$ is $\amalg$ known to be finite; so we have no hope of verifying BSD II in such cases. This will not stop us talking about "numerical evidence"!


## Verifying the first conjecture

- To start with let us see whether we can verify, for indiviual curves $E$, that the first conjecture holds: $r(E)=r_{a n}(E)$.


## Verifying the first conjecture

- To start with let us see whether we can verify, for indiviual curves $E$, that the first conjecture holds: $r(E)=r_{a n}(E)$.
- We know that this is true when $r_{a n}(E) \leq 1$, but how may we determine $r_{a n}(E)$ ?


## Verifying the first conjecture

- To start with let us see whether we can verify, for indiviual curves $E$, that the first conjecture holds: $r(E)=r_{a n}(E)$.
- We know that this is true when $r_{a n}(E) \leq 1$, but how may we determine $r_{a n}(E)$ ?
- This may seem like a problem in numerical analysis, but we can do a lot better than just computing the value $L(E, 1)$ numerically to see if it looks like 0.0000 .


## Verifying the first conjecture

- To start with let us see whether we can verify, for indiviual curves $E$, that the first conjecture holds: $r(E)=r_{a n}(E)$.
- We know that this is true when $r_{a n}(E) \leq 1$, but how may we determine $r_{a n}(E)$ ?
- This may seem like a problem in numerical analysis, but we can do a lot better than just computing the value $L(E, 1)$ numerically to see if it looks like 0.0000 .
- First of all, we can compute the root number $w(E / \mathbb{Q})$ exactly (as a product of local root numbers). This tells us the parity of $r_{a n}(E)$. But also...


## Verifying the first conjecture

- To start with let us see whether we can verify, for indiviual curves $E$, that the first conjecture holds: $r(E)=r_{a n}(E)$.
- We know that this is true when $r_{a n}(E) \leq 1$, but how may we determine $r_{a n}(E)$ ?
- This may seem like a problem in numerical analysis, but we can do a lot better than just computing the value $L(E, 1)$ numerically to see if it looks like 0.0000 .
- First of all, we can compute the root number $w(E / \mathbb{Q})$ exactly (as a product of local root numbers). This tells us the parity of $r_{a n}(E)$. But also...
- Second consequence of modularity: The ratio $L(E, 1) / \Omega(E)$ is a rational number whose value may be determined exactly using modular symbols.


## Verifying the first conjecture

- To start with let us see whether we can verify, for indiviual curves $E$, that the first conjecture holds: $r(E)=r_{a n}(E)$.
- We know that this is true when $r_{a n}(E) \leq 1$, but how may we determine $r_{a n}(E)$ ?
- This may seem like a problem in numerical analysis, but we can do a lot better than just computing the value $L(E, 1)$ numerically to see if it looks like 0.0000 .
- First of all, we can compute the root number $w(E / \mathbb{Q})$ exactly (as a product of local root numbers). This tells us the parity of $r_{a n}(E)$. But also...
- Second consequence of modularity: The ratio $L(E, 1) / \Omega(E)$ is a rational number whose value may be determined exactly using modular symbols. In particular, we can determine via a discrete algorithm whether or not $L(E, 1)$ is zero; equivalently, whether $r_{a n}(E)=0$.


## Determining $r_{a n}(E)$ (continued)

- Putting these together, we can determine (discretely) whether

$$
r_{a n}(E)=0 \quad \text { or } \quad r_{a n}(E)=1,3,5, \ldots \quad \text { or } \quad r_{a n}(E)=2,4,6, \ldots
$$

## Determining $r_{a n}(E)$ (continued)

- Putting these together, we can determine (discretely) whether

$$
r_{a n}(E)=0 \quad \text { or } \quad r_{a n}(E)=1,3,5, \ldots \quad \text { or } \quad r_{a n}(E)=2,4,6, \ldots
$$

- If $r_{a n}(E)$ is odd then evaluating $L^{\prime}(E, 1)$ approximately can prove that it is nonzero, and hence that $r_{a n}(E)=1$ (if it is).


## Determining $r_{a n}(E)$ (continued)

- Putting these together, we can determine (discretely) whether

$$
r_{a n}(E)=0 \quad \text { or } \quad r_{a n}(E)=1,3,5, \ldots \quad \text { or } \quad r_{a n}(E)=2,4,6, \ldots
$$

- If $r_{a n}(E)$ is odd then evaluating $L^{\prime}(E, 1)$ approximately can prove that it is nonzero, and hence that $r_{a n}(E)=1$ (if it is).
- Similarly, if $r_{a n}(E)$ is even and positive, then evaluating $L^{\prime \prime}(E, 1)$ approximately can prove that it is nonzero, and hence that $r_{a n}(E)=2$ (if it is).


## Determining $r_{a n}(E)$ (continued)

- Putting these together, we can determine (discretely) whether

$$
r_{a n}(E)=0 \quad \text { or } \quad r_{a n}(E)=1,3,5, \ldots \quad \text { or } \quad r_{a n}(E)=2,4,6, \ldots
$$

- If $r_{a n}(E)$ is odd then evaluating $L^{\prime}(E, 1)$ approximately can prove that it is nonzero, and hence that $r_{a n}(E)=1$ (if it is).
- Similarly, if $r_{a n}(E)$ is even and positive, then evaluating $L^{\prime \prime}(E, 1)$ approximately can prove that it is nonzero, and hence that $r_{a n}(E)=2$ (if it is).
- Further, if $r_{a n}(E)$ is odd and $L^{\prime}(E, 1)$ is approximately zero, then we can prove that it is exactly zero: by finding (at least) two independent points in $E(\mathbb{Q})$, we can show that $r(E)>1$, and hence that $r_{a n}(E)>1$. Now computing $L^{\prime \prime \prime}(E, 1)$ approximately can establish that $r_{a n}(E)=3$ (if it is).


## Verifying the first conjecture: summary

- If $r_{a n}(E) \leq 3$ then we can find the exact value of $r_{a n}(E)$, using
(1) the root number (to obtain the parity);
(2) modular symbols (to establish whether $r_{a n}(E)=0$ );
(3) Kolyvagin and Gross-Zagier (to distinguish $r_{a n}(E)=1$ from $\left.r_{a n}(E)=3\right)$;
(4) Numerical evaluation of $L^{(j)}(E, 1)$.


## Verifying the first conjecture: summary

- If $r_{a n}(E) \leq 3$ then we can find the exact value of $r_{a n}(E)$, using
(1) the root number (to obtain the parity);
(2) modular symbols (to establish whether $r_{a n}(E)=0$ );
(3) Kolyvagin and Gross-Zagier (to distinguish $r_{a n}(E)=1$ from $\left.r_{a n}(E)=3\right)$;
(4) Numerical evaluation of $L^{(j)}(E, 1)$.
- But if $r_{a n}(E)>3$ then we have no way of determining it rigorously!


## Verifying the first conjecture: summary

- If $r_{a n}(E) \leq 3$ then we can find the exact value of $r_{a n}(E)$, using
(1) the root number (to obtain the parity);
(2) modular symbols (to establish whether $r_{a n}(E)=0$ );
(3) Kolyvagin and Gross-Zagier (to distinguish $r_{a n}(E)=1$ from

$$
\left.r_{a n}(E)=3\right) ;
$$

(4) Numerical evaluation of $L^{(j)}(E, 1)$.

- But if $r_{a n}(E)>3$ then we have no way of determining it rigorously!
- If $r_{a n}(E)=4$ then we can tell that it is positive and even, and compute that $L^{\prime \prime}(E, 1)$ is very close to zero, but have no way of showing that $L^{\prime \prime}(E, 1)=0$.


## Verifying the first conjecture: summary

- If $r_{a n}(E) \leq 3$ then we can find the exact value of $r_{a n}(E)$, using
(1) the root number (to obtain the parity);
(2) modular symbols (to establish whether $r_{a n}(E)=0$ );
(3) Kolyvagin and Gross-Zagier (to distinguish $r_{a n}(E)=1$ from

$$
\left.r_{a n}(E)=3\right) ;
$$

(4) Numerical evaluation of $L^{(j)}(E, 1)$.

- But if $r_{a n}(E)>3$ then we have no way of determining it rigorously!
- If $r_{a n}(E)=4$ then we can tell that it is positive and even, and compute that $L^{\prime \prime}(E, 1)$ is very close to zero, but have no way of showing that $L^{\prime \prime}(E, 1)=0$.
- Similarly, If $r_{a n}(E)=5$ then we can tell that it is odd and at least 3 , and compute that $L^{\prime \prime \prime}(E, 1)$ is very close to zero, but have no way of showing that $L^{\prime \prime \prime}(E, 1)=0$.


## Verifying the first conjecture: examples

There are 614308 isogeny classes of elliptic curves with conductor $N_{E} \leq 140000$.

## Verifying the first conjecture: examples

There are 614308 isogeny classes of elliptic curves with conductor $N_{E} \leq 140000$. All have $r_{a n}(E) \leq 3$, and in every case $r_{a n}(E)=r(E)$.

| range of $N_{E}$ | $\#$ | $r=0$ | $r=1$ | $r=2$ | $r=3$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $0-9999$ | 38042 | 16450 | 19622 | 1969 | 1 |
| $10000-19999$ | 43175 | 17101 | 22576 | 3490 | 8 |
| $20000-29999$ | 44141 | 17329 | 22601 | 4183 | 28 |
| $30000-39999$ | 44324 | 16980 | 22789 | 4517 | 38 |
| $40000-49999$ | 44519 | 16912 | 22826 | 4727 | 54 |
| $50000-59999$ | 44301 | 16728 | 22400 | 5126 | 47 |
| $60000-69999$ | 44361 | 16568 | 22558 | 5147 | 88 |
| $70000-79999$ | 44449 | 16717 | 22247 | 5400 | 85 |
| $80000-89999$ | 44861 | 17052 | 22341 | 5369 | 99 |
| $90000-99999$ | 45053 | 16923 | 22749 | 5568 | 83 |
| $100000-109999$ | 44274 | 16599 | 22165 | 5369 | 141 |
| $110000-119999$ | 44071 | 16307 | 22173 | 5453 | 138 |
| $120000-129999$ | 44655 | 16288 | 22621 | 5648 | 98 |
| $130000-139999$ | 44082 | 16025 | 22201 | 5738 | 118 |
| $0-139999$ | 614308 | 233979 | 311599 | 67704 | 1026 |

## A case with $r=0$

- The curve $E=11 a 1$ has coefficients $[0,-1,1,-10,-20]$ and conductor 11.


## A case with $r=0$

- The curve $E=11 a 1$ has coefficients $[0,-1,1,-10,-20]$ and conductor 11.
- Using modular symbols we find that $L(E, 1) / \Omega(E)=\frac{1}{5}$ (exactly!). So $r_{a n}(E)=0$, and hence we know that $r_{a n}(E)=r(E)$.


## A case with $r=0$

- The curve $E=11 a 1$ has coefficients $[0,-1,1,-10,-20]$ and conductor 11.
- Using modular symbols we find that $L(E, 1) / \Omega(E)=\frac{1}{5}$ (exactly!). So $r_{a n}(E)=0$, and hence we know that $r_{a n}(E)=r(E)$.
- Also $\prod_{p} c_{p}=c_{11}=5$ and $\# E(\mathbb{Q})_{\text {tors }}=5$.


## A case with $r=0$

- The curve $E=11 a 1$ has coefficients $[0,-1,1,-10,-20]$ and conductor 11.
- Using modular symbols we find that $L(E, 1) / \Omega(E)=\frac{1}{5}$ (exactly!). So $r_{a n}(E)=0$, and hence we know that $r_{a n}(E)=r(E)$.
- Also $\prod_{p} c_{p}=c_{11}=5$ and $\# E(\mathbb{Q})_{\text {tors }}=5$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L(E, 1) / \Omega(E)}{\prod c_{p} / \# T^{2}}=\frac{1 / 5}{5 / 5^{2}}=1$.


## A case with $r=0$

- The curve $E=11 a 1$ has coefficients $[0,-1,1,-10,-20]$ and conductor 11.
- Using modular symbols we find that $L(E, 1) / \Omega(E)=\frac{1}{5}$ (exactly!). So $r_{a n}(E)=0$, and hence we know that $r_{a n}(E)=r(E)$.
- Also $\prod_{p} c_{p}=c_{11}=5$ and $\# E(\mathbb{Q})_{\text {tors }}=5$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L(E, 1) / \Omega(E)}{\prod c_{p} / \# T^{2}}=\frac{1 / 5}{5 / 5^{2}}=1$.
- This can be verified by careful application of known results: see R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one, arXiv:1010.2431v2 [math.NT] for details of this and similar examples, including all curves of rank at most 1 and conductor less than 5000. Or ...


## A case with $r=0$

- The curve $E=11 a 1$ has coefficients $[0,-1,1,-10,-20]$ and conductor 11.
- Using modular symbols we find that $L(E, 1) / \Omega(E)=\frac{1}{5}$ (exactly!). So $r_{a n}(E)=0$, and hence we know that $r_{a n}(E)=r(E)$.
- Also $\prod_{p} c_{p}=c_{11}=5$ and $\# E(\mathbb{Q})_{\text {tors }}=5$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L(E, 1) / \Omega(E)}{\prod c_{p} / \# T^{2}}=\frac{1 / 5}{5 / 5^{2}}=1$.
- This can be verified by careful application of known results: see R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one, arXiv:1010.2431v2 [math.NT] for details of this and similar examples, including all curves of rank at most 1 and conductor less than 5000 . Or ...
- sage: EllipticCurve('11a1').prove_BSD()!


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.
- An AGM computation shows that $\Omega(E)=1.1885495 \ldots$;


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.
- An AGM computation shows that $\Omega(E)=1.1885495 \ldots$; now $L^{\prime}(E, 1) /(\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.
- An AGM computation shows that $\Omega(E)=1.1885495 \ldots$; now $L^{\prime}(E, 1) /(\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$
- Using Gross-Zagier this value can be shown to be exactly 1 .


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.
- An AGM computation shows that $\Omega(E)=1.1885495 \ldots$; now $L^{\prime}(E, 1) /(\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$.
- Using Gross-Zagier this value can be shown to be exactly 1 .
- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=2$.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.
- An AGM computation shows that $\Omega(E)=1.1885495 \ldots$; now $L^{\prime}(E, 1) /(\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$.
- Using Gross-Zagier this value can be shown to be exactly 1.
- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=2$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime}(E, 1) / \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=\frac{1}{1 / 2^{2}}=4$.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.
- An AGM computation shows that $\Omega(E)=1.1885495 \ldots$; now $L^{\prime}(E, 1) /(\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$.
- Using Gross-Zagier this value can be shown to be exactly 1 .
- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=2$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime}(E, 1) / \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=\frac{1}{1 / 2^{2}}=4$.
- Kolyvagin gives $\# \amalg(E / \mathbb{Q})$ finite with no odd part.


## A case with $r=1$

- The curve $E=12480 o 1$ has coefficients $[0,-1,0,-260,-1530]$ and conductor $12480=2^{6} \cdot 3 \cdot 5 \cdot 13$.
- The root number is -1 , so $r_{a n}(E)$ is odd.
- $L^{\prime}(E, 1)=4.258599 \ldots$ (approximately), so $r_{a n}(E)=1$.
- 2-descent verifies that $r(E)=1$ and gives the generator $(27,102)$ whose canonical height is $\operatorname{Reg}(E)=3.5830 \ldots$. It also shows that $\amalg(E / \mathbb{Q})[2]$ has order 4.
- An AGM computation shows that $\Omega(E)=1.1885495 \ldots$; now $L^{\prime}(E, 1) /(\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$.
- Using Gross-Zagier this value can be shown to be exactly 1 .
- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=2$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime}(E, 1) / \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=\frac{1}{1 / 2^{2}}=4$.
- Kolyvagin gives $\# \amalg(E / \mathbb{Q})$ finite with no odd part.
- BSD holds!


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- $\Omega(E)=4.980425 \ldots$


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- $\Omega(E)=4.980425 \ldots$
- Hence $L^{\prime \prime}(E, 1) /(2!\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- $\Omega(E)=4.980425 \ldots$
- Hence $L^{\prime \prime}(E, 1) /(2!\Omega(E) \operatorname{Reg}(E))=1.0000000000$.

This is approximate: the ratio is not known to be rational!

## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- $\Omega(E)=4.980425 \ldots$
- Hence $L^{\prime \prime}(E, 1) /(2!\Omega(E) \operatorname{Reg}(E))=1.0000000000$.

This is approximate: the ratio is not known to be rational!

- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- $\Omega(E)=4.980425 \ldots$
- Hence $L^{\prime \prime}(E, 1) /(2!\Omega(E) \operatorname{Reg}(E))=1.0000000000$.

This is approximate: the ratio is not known to be rational!

- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime \prime}(E, 1) / 2 \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=1$.


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- $\Omega(E)=4.980425 \ldots$
- Hence $L^{\prime \prime}(E, 1) /(2!\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$

This is approximate: the ratio is not known to be rational!

- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime \prime}(E, 1) / 2 \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=1$.
- So BSD holds for $E$ if $\amalg(E / \mathbb{Q})[p]=0$ for all odd $p$, and


## A case with $r=2$

- $E=389 a 1=[0,1,1,-2,0]$ has conductor 389 .
- $w_{E}=+1$, so $r_{a n}(E)$ is even. Modular symbols show that $r_{a n}(E) \neq 0$.
- $L^{\prime \prime}(E, 1)=1.51863300057685 \ldots$ (approximately), so $r_{a n}(E)=2$.
- $r(E)=2$ by 2-descent, which finds generators $(0,-1)$ and $(-1,1)$ with $\operatorname{Reg}(E)=0.152460 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- $\Omega(E)=4.980425 \ldots$
- Hence $L^{\prime \prime}(E, 1) /(2!\Omega(E) \operatorname{Reg}(E))=1.0000000000 \ldots$ This is approximate: the ratio is not known to be rational!
- We have $\prod c_{p}=1$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime \prime}(E, 1) / 2 \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=1$.
- So BSD holds for $E$ if $\amalg(E / \mathbb{Q})[p]=0$ for all odd $p$, and the above ratio is exactly 1 .


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{a n}(E) \geq 3$.


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{a n}(E) \geq 3$.
- $r(E)=3$ by 2 -descent, which finds generators $(15,-7),(16,-16)$ and $(19,20)$ with $\operatorname{Reg}(E)=2.159011 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{a n}(E) \geq 3$.
- $r(E)=3$ by 2 -descent, which finds generators $(15,-7),(16,-16)$ and $(19,20)$ with $\operatorname{Reg}(E)=2.159011 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- So (Kolyvagin, Gross-Zagier) $r_{a n}(E)>1$. Now $L^{\prime \prime \prime}(E, 1)=59.09365958 \ldots$ (approximately) implies $r_{a n}(E)=3$.


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{a n}(E) \geq 3$.
- $r(E)=3$ by 2 -descent, which finds generators $(15,-7),(16,-16)$ and $(19,20)$ with $\operatorname{Reg}(E)=2.159011 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- So (Kolyvagin, Gross-Zagier) $r_{a n}(E)>1$. Now $L^{\prime \prime \prime}(E, 1)=59.09365958 \ldots$ (approximately) implies $r_{a n}(E)=3$.
- $\Omega(E)=2.2808923 \ldots$ and hence


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{a n}(E) \geq 3$.
- $r(E)=3$ by 2 -descent, which finds generators $(15,-7),(16,-16)$ and $(19,20)$ with $\operatorname{Reg}(E)=2.159011 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- So (Kolyvagin, Gross-Zagier) $r_{a n}(E)>1$. Now $L^{\prime \prime \prime}(E, 1)=59.09365958 \ldots$ (approximately) implies $r_{a n}(E)=3$.
- $\Omega(E)=2.2808923 \ldots$ and hence
- $L^{\prime \prime \prime}(E, 1) /(3!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{\text {an }}(E) \geq 3$.
- $r(E)=3$ by 2 -descent, which finds generators $(15,-7),(16,-16)$ and $(19,20)$ with $\operatorname{Reg}(E)=2.159011 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- So (Kolyvagin, Gross-Zagier) $r_{a n}(E)>1$. Now $L^{\prime \prime \prime}(E, 1)=59.09365958 \ldots$ (approximately) implies $r_{a n}(E)=3$.
- $\Omega(E)=2.2808923 \ldots$ and hence
- $L^{\prime \prime \prime}(E, 1) /(3!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).
- We have $\prod c_{p}=2 \cdot 1=2$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{a n}(E) \geq 3$.
- $r(E)=3$ by 2-descent, which finds generators $(15,-7),(16,-16)$ and $(19,20)$ with $\operatorname{Reg}(E)=2.159011 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- So (Kolyvagin, Gross-Zagier) $r_{a n}(E)>1$. Now $L^{\prime \prime \prime}(E, 1)=59.09365958 \ldots$ (approximately) implies $r_{a n}(E)=3$.
- $\Omega(E)=2.2808923 \ldots$ and hence
- $L^{\prime \prime \prime}(E, 1) /(3!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).
- We have $\prod c_{p}=2 \cdot 1=2$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime \prime \prime}(E, 1) / 6 \operatorname{Reg}(E) \Omega(E)}{\Pi c_{p} / \# T^{2}}=1$.


## A case with $r=3$

- $E=234446 a 1=[1,1,0,-696,6784]$ has conductor 234446.
- $w_{E}=-1$, so $r_{a n}(E)$ is odd.
- $\left|L^{\prime}(E, 1)\right|<10^{-22}$ so we suspect $r_{a n}(E) \geq 3$.
- $r(E)=3$ by 2 -descent, which finds generators $(15,-7),(16,-16)$ and $(19,20)$ with $\operatorname{Reg}(E)=2.159011 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- So (Kolyvagin, Gross-Zagier) $r_{a n}(E)>1$. Now $L^{\prime \prime \prime}(E, 1)=59.09365958 \ldots$ (approximately) implies $r_{a n}(E)=3$.
- $\Omega(E)=2.2808923 \ldots$ and hence
- $L^{\prime \prime \prime}(E, 1) /(3!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).
- We have $\prod c_{p}=2 \cdot 1=2$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{\prime \prime \prime}(E, 1) / 6 \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=1$.
- Again, BSD holds for $E$ if $\amalg(E / \mathbb{Q})[p]=0$ for all odd $p$, and the above ratio is exactly 2 .


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446 .


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.
- $r(E)=4$ by 2-descent, which finds generators $(-9,19),(-8,23)$, $(-7,25)$ and $(4,-7)$ with $\operatorname{Reg}(E)=1.5043 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.
- $r(E)=4$ by 2-descent, which finds generators $(-9,19),(-8,23)$, $(-7,25)$ and $(4,-7)$ with $\operatorname{Reg}(E)=1.5043 \ldots$, and also that $Ш(E / \mathbb{Q})[2]=0$.
- If $L^{\prime \prime}(E, 1)=0$ exactly, then $L^{(4)}(E, 1)=214.6523375 \ldots$ (approximately) and $r_{a n}(E)=4$; but we cannot show that $r_{a n}(E) \neq 2$ !


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.
- $r(E)=4$ by 2-descent, which finds generators $(-9,19),(-8,23)$, $(-7,25)$ and $(4,-7)$ with $\operatorname{Reg}(E)=1.5043 \ldots$, and also that $Ш(E / \mathbb{Q})[2]=0$.
- If $L^{\prime \prime}(E, 1)=0$ exactly, then $L^{(4)}(E, 1)=214.6523375 \ldots$ (approximately) and $r_{a n}(E)=4$; but we cannot show that $r_{a n}(E) \neq 2$ !
- $\Omega(E)=2.97267 \ldots$


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.
- $r(E)=4$ by 2-descent, which finds generators $(-9,19),(-8,23)$, $(-7,25)$ and $(4,-7)$ with $\operatorname{Reg}(E)=1.5043 \ldots$, and also that $Ш(E / \mathbb{Q})[2]=0$.
- If $L^{\prime \prime}(E, 1)=0$ exactly, then $L^{(4)}(E, 1)=214.6523375 \ldots$ (approximately) and $r_{a n}(E)=4$; but we cannot show that $r_{a n}(E) \neq 2$ !
- $\Omega(E)=2.97267 \ldots$
- $L^{(4)}(E, 1) /(4!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.
- $r(E)=4$ by 2-descent, which finds generators $(-9,19),(-8,23)$, $(-7,25)$ and $(4,-7)$ with $\operatorname{Reg}(E)=1.5043 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- If $L^{\prime \prime}(E, 1)=0$ exactly, then $L^{(4)}(E, 1)=214.6523375 \ldots$ (approximately) and $r_{a n}(E)=4$; but we cannot show that $r_{a n}(E) \neq 2$ !
- $\Omega(E)=2.97267 \ldots$
- $L^{(4)}(E, 1) /(4!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).
- $\prod c_{p}=2 \cdot 1=2$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.
- $r(E)=4$ by 2-descent, which finds generators $(-9,19),(-8,23)$, $(-7,25)$ and $(4,-7)$ with $\operatorname{Reg}(E)=1.5043 \ldots$, and also that $\amalg(E / \mathbb{Q})[2]=0$.
- If $L^{\prime \prime}(E, 1)=0$ exactly, then $L^{(4)}(E, 1)=214.6523375 \ldots$ (approximately) and $r_{a n}(E)=4$; but we cannot show that $r_{a n}(E) \neq 2$ !
- $\Omega(E)=2.97267 \ldots$
- $L^{(4)}(E, 1) /(4!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).
- $\prod c_{p}=2 \cdot 1=2$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{(4)}(E, 1) / 24 \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=1$.


## A case with $r=4$

- $E=234446 b 1=[1,-1,0,-79,289]$ also has conductor 234446.
- $w_{E}=+1$, so $r_{a n}(E)$ is even, and positive (modular symbols).
- $\left|L^{\prime \prime}(E, 1)\right|<10^{-21}$ so we suspect $r_{a n}(E) \geq 4$.
- $r(E)=4$ by 2-descent, which finds generators $(-9,19),(-8,23)$, $(-7,25)$ and $(4,-7)$ with $\operatorname{Reg}(E)=1.5043 \ldots$, and also that $Ш(E / \mathbb{Q})[2]=0$.
- If $L^{\prime \prime}(E, 1)=0$ exactly, then $L^{(4)}(E, 1)=214.6523375 \ldots$ (approximately) and $r_{a n}(E)=4$; but we cannot show that $r_{a n}(E) \neq 2$ !
- $\Omega(E)=2.97267 \ldots$
- $L^{(4)}(E, 1) /(4!\Omega(E) \operatorname{Reg}(E))=2.0000000000 \ldots$ (approximately).
- $\prod c_{p}=2 \cdot 1=2$ and $\# E(\mathbb{Q})_{\text {tors }}=1$.
- BSD predicts that $\# \amalg(E / \mathbb{Q})=\frac{L^{(4)}(E, 1) / 24 \operatorname{Reg}(E) \Omega(E)}{\prod c_{p} / \# T^{2}}=1$.
- Again, BSD holds for $E$ if $L^{\prime \prime}(E, 1)=0, \amalg(E / \mathbb{Q})[p]=0$ for all odd $p$, and the above ratio is exactly 2 .


## Summary for curves in the database

My database currently contains all elliptic curves $E$ of conductor $N_{E}<140000$, and for each one it gives all the numbers which appear in the BSD formula, with the "analytic order of $\mathrm{U}^{\prime}, \amalg_{a n}(E / \mathbb{Q})$, in place of $|W(E / \mathbb{Q})|$. This is just the value predicted by BSD, rounded.

## Summary for curves in the database

My database currently contains all elliptic curves $E$ of conductor $N_{E}<140000$, and for each one it gives all the numbers which appear in the BSD formula, with the "analytic order of $\amalg$ ", $Ш_{a n}(E / \mathbb{Q})$, in place of $|\amalg(E / \mathbb{Q})|$. This is just the value predicted by BSD, rounded.

In all cases $\amalg_{a n}(E / \mathbb{Q})$ is an integer (when $r_{a n}(E)=0$ ) or approximately an integer (when $r_{a n}(E) \geq 1$ ), and the integer is a square.

## Summary for curves in the database

My database currently contains all elliptic curves $E$ of conductor $N_{E}<140000$, and for each one it gives all the numbers which appear in the BSD formula, with the "analytic order of $\amalg$ ", $Ш_{a n}(E / \mathbb{Q})$, in place of $|\amalg(E / \mathbb{Q})|$. This is just the value predicted by BSD, rounded.

In all cases $\amalg_{a n}(E / \mathbb{Q})$ is an integer (when $r_{a n}(E)=0$ ) or approximately an integer (when $r_{a n}(E) \geq 1$ ), and the integer is a square.

The value is 1 in $93.31 \%$ of the cases, including all the curves of rank greater than 1.

## Summary for curves in the database

My database currently contains all elliptic curves $E$ of conductor $N_{E}<140000$, and for each one it gives all the numbers which appear in the BSD formula, with the "analytic order of $\amalg$ ", $Ш_{a n}(E / \mathbb{Q})$, in place of $|\amalg(E / \mathbb{Q})|$. This is just the value predicted by BSD, rounded.

In all cases $\amalg_{a n}(E / \mathbb{Q})$ is an integer (when $r_{a n}(E)=0$ ) or approximately an integer (when $r_{a n}(E) \geq 1$ ), and the integer is a square.

The value is 1 in $93.31 \%$ of the cases, including all the curves of rank greater than 1.

The largest value is $784=28^{2}$, for $138437 c 1=[1,1,0,-6193920002885,-5933305228440879554]$ (which has $E(\mathbb{Q})=0$ ).

## Summary for curves in the database

My database currently contains all elliptic curves $E$ of conductor $N_{E}<140000$, and for each one it gives all the numbers which appear in the BSD formula, with the "analytic order of $\amalg$ ", $Ш_{a n}(E / \mathbb{Q})$, in place of $|\amalg(E / \mathbb{Q})|$. This is just the value predicted by BSD, rounded.

In all cases $\amalg_{a n}(E / \mathbb{Q})$ is an integer (when $r_{a n}(E)=0$ ) or approximately an integer (when $r_{a n}(E) \geq 1$ ), and the integer is a square.

The value is 1 in $93.31 \%$ of the cases, including all the curves of rank greater than 1.

The largest value is $784=28^{2}$, for $138437 c 1=[1,1,0,-6193920002885,-5933305228440879554]$ (which has $E(\mathbb{Q})=0$ ).

All primes up to 23 appear as factors.

## Some details of the modular symbol contribution

 Let $f_{E}$ be the newform in $S_{2}(N)$ attached to $E$.
## Some details of the modular symbol contribution

Let $f_{E}$ be the newform in $S_{2}(N)$ attached to $E$.
For $\alpha, \beta \in \mathcal{H}^{*}=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}$, let $\{\alpha, \beta\}$ denote a geodesic path from $\alpha$ to $\beta$, and $\langle\{\alpha, \beta\}, f\rangle=\int_{\alpha}^{\beta} 2 \pi i f(z) d z$.

## Some details of the modular symbol contribution

Let $f_{E}$ be the newform in $S_{2}(N)$ attached to $E$.
For $\alpha, \beta \in \mathcal{H}^{*}=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}$, let $\{\alpha, \beta\}$ denote a geodesic path from $\alpha$ to $\beta$, and $\langle\{\alpha, \beta\}, f\rangle=\int_{\alpha}^{\beta} 2 \pi i f(z) d z$.

We have $L(E, 1)=L\left(f_{E}, 1\right)=\langle\{\infty, 0\}, f\rangle$.

## Some details of the modular symbol contribution

Let $f_{E}$ be the newform in $S_{2}(N)$ attached to $E$.
For $\alpha, \beta \in \mathcal{H}^{*}=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}$, let $\{\alpha, \beta\}$ denote a geodesic path from $\alpha$ to $\beta$, and $\langle\{\alpha, \beta\}, f\rangle=\int_{\alpha}^{\beta} 2 \pi i f(z) d z$.

We have $L(E, 1)=L\left(f_{E}, 1\right)=\langle\{\infty, 0\}, f\rangle$.
The Hecke operator $T_{p}$ satisfies
$\left\langle T_{p}\{\alpha, \beta\}, f\right\rangle=\left\langle\{\alpha, \beta\}, T_{p} f\right\rangle=\left\langle\{\alpha, \beta\}, a_{p} f\right\rangle=a_{p}\langle\{\alpha, \beta\}, f\rangle$.

## Some details of the modular symbol contribution

Let $f_{E}$ be the newform in $S_{2}(N)$ attached to $E$.
For $\alpha, \beta \in \mathcal{H}^{*}=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}$, let $\{\alpha, \beta\}$ denote a geodesic path from $\alpha$ to $\beta$, and $\langle\{\alpha, \beta\}, f\rangle=\int_{\alpha}^{\beta} 2 \pi i f(z) d z$.

We have $L(E, 1)=L\left(f_{E}, 1\right)=\langle\{\infty, 0\}, f\rangle$.
The Hecke operator $T_{p}$ satisfies
$\left\langle T_{p}\{\alpha, \beta\}, f\right\rangle=\left\langle\{\alpha, \beta\}, T_{p} f\right\rangle=\left\langle\{\alpha, \beta\}, a_{p} f\right\rangle=a_{p}\langle\{\alpha, \beta\}, f\rangle$.
Applying this with $\{\alpha, \beta\}=\{\infty, 0\}$, where $\left(T_{p}-p-1\right)\{\infty, 0\}=\sum_{x}\{0, x / p\}$ we find that

$$
\left(1+p-a_{p}\right) L(E, 1)=n_{p} \Omega(E)
$$

for some $n_{p} \in \mathbb{Z}$. Hence

$$
\frac{L(E, 1)}{\Omega(E)}=\frac{n_{p}}{1+p-a_{p}} \in \mathbb{Q} .
$$

## Example: $N=11$

Let $E=11 a 1$.
$\Omega(E)=\left\langle\left\{\frac{1}{2}, 0\right\}, f\right\rangle$.
From $T_{2}\{\infty, 0\}=\left(\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)+\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)\right)\{\infty, 0\}=$ $\{\infty, 0\}+\{\infty, 0\}+\left\{\infty, \frac{1}{2}\right\}=3\{\infty, 0\}+\left\{0, \frac{1}{2}\right\}$, it follows that $\left(3-a_{2}\right) L(E, 1)=\Omega(E)$.

But $a_{2}=-2$, so $L(E, 1) / \Omega(E)=1 / 5$.


[^0]:    1 "Should be a short talk then" RH-B

