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Introduction

I will not talk about the history of the conjecture, leaving that to the
afternoon’s distinguished speakers!

To set the scene for the rest of the conference, I will first explain in
some detail exactly what the BSD conjectures state, for elliptic
curves defined over Q, distinguishing between the First (or
“weak”) and the Second (or “strong”) Conjectures.
In the second part of the talk, I will discuss how the conjectures
might be verified for individual curves, or for families of curves,
using both theoretical and computational methods.
Conclusions:

1 The full BSD conjecture is proved for many elliptic curves, all of
rank 0 or 1 and all but a finite number with CM.

2 For elliptic curves of higher rank, even numerical verification is
impossible for the strong conjecture.

3 Nevertheless the numbers are compelling!
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Elliptic curves

An elliptic curve defined over the field K is
a smooth projective curve E, of genus 1, defined over K,
together with
a K-rational point, OE.

Elliptic curves all have smooth plane cubic models which are the
projective completion of affine curves defined by Weierstrass
Equations

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

with a1, . . . , a6 ∈ K satisfying ∆E = ∆(a1, a2, a3, a4, a6) 6= 0.
The distinguished point OE is the (unique) point [0 : 1 : 0] at infinity
on this model.
For short we denote the above equation by [a1, a2, a3, a4, a6].
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The group of points of an elliptic curve

Let E/K be an elliptic curve. For any field L ⊇ K the set of
L-rational points, E(L), has the structure of an Abelian group with
identity OE.

In the Weierstrass model, the group law is defined by the classical
tangent-chord method; three points P,Q,R add to OE if and only if
they are the three intersection points of E with a (projective) line,
counting multiplicities.
Some basic questions are:

1 what kind of a group is E(K)?
2 how does E(K) vary (for fixed K)?
3 can we determine E(K) (for given E)?

From now on we will take K = Q.
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Elliptic curves over Q

Mordell proved in 1922 that for every elliptic curve E/Q the group
E(Q) is finitely-generated.

This was later generalised to elliptic curves over number fields,
and beyond.
This essentially answers our first question:

E(Q) ∼= Zr(E) ⊕ T

where the rank r(E) ≥ 0, and T is a finite group.
For the second question (over K = Q), we know

|T| ≤ 16 (Mazur, 1977)
there exists E with r(E) ≥ 28 (Elkies, 2006)

BSD predicts the value of the “arithmetic rank” (or Mordell-Weil
rank) r(E) in terms of the L-function attached to E.
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The L-function of E/Q
By suitable scaling we may assume that the equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

defining an elliptic curve E/Q is integral (all ai ∈ Z) and minimal
(|∆E| minimal).

Let NE denote the conductor of E: a positive integer divisible by
the same primes as the minimal discriminant ∆E. [Computed by
Tate’s algorithm.]
The L-function of E is a function of the complex variable s defined
by the following Euler product:

L(E, s) =
∏
p-NE

(1− app−s + p1−2s)−1 ·
∏
p|NE

(1− app−s)−1

where ap = 1 + p−#E(Fp).
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The L-function of E/Q (continued)

L(E, s) =
∏
p-NE

(1− app−s + p1−2s)−1 ·
∏
p|NE

(1− app−s)−1 =

∞∑
n=1

an

ns

Since |ap| ≤ 2
√

p for all p - NE (Hasse), the series converges in the
half-plane <(s) > 3/2.

When p | NE we have ap = +1,−1, 0 according to whether E has
split or non-split multiplicative, or additive reduction at p.
First consequence of modularity: L(E, s) has analytic
continuation to all of C, and satisfies a functional equation relating
L(E, s) and L(E, 2− s):

ΛE(s) := Ns/2
E (2π)−s

Γ(s)L(E, s) = w(E/Q)ΛE(2− s)

where root number w(E/Q) = ±1 is the sign of the functional
equation (SFE) of E.

John Cremona (Warwick) Numerical evidence for the BSD conjecture 9 / 31



The L-function of E/Q (continued)

L(E, s) =
∏
p-NE

(1− app−s + p1−2s)−1 ·
∏
p|NE

(1− app−s)−1 =

∞∑
n=1

an

ns

Since |ap| ≤ 2
√

p for all p - NE (Hasse), the series converges in the
half-plane <(s) > 3/2.
When p | NE we have ap = +1,−1, 0 according to whether E has
split or non-split multiplicative, or additive reduction at p.

First consequence of modularity: L(E, s) has analytic
continuation to all of C, and satisfies a functional equation relating
L(E, s) and L(E, 2− s):

ΛE(s) := Ns/2
E (2π)−s

Γ(s)L(E, s) = w(E/Q)ΛE(2− s)

where root number w(E/Q) = ±1 is the sign of the functional
equation (SFE) of E.

John Cremona (Warwick) Numerical evidence for the BSD conjecture 9 / 31



The L-function of E/Q (continued)

L(E, s) =
∏
p-NE

(1− app−s + p1−2s)−1 ·
∏
p|NE

(1− app−s)−1 =

∞∑
n=1

an

ns

Since |ap| ≤ 2
√

p for all p - NE (Hasse), the series converges in the
half-plane <(s) > 3/2.
When p | NE we have ap = +1,−1, 0 according to whether E has
split or non-split multiplicative, or additive reduction at p.
First consequence of modularity: L(E, s) has analytic
continuation to all of C, and satisfies a functional equation relating
L(E, s) and L(E, 2− s):

ΛE(s) := Ns/2
E (2π)−s

Γ(s)L(E, s) = w(E/Q)ΛE(2− s)

where root number w(E/Q) = ±1 is the sign of the functional
equation (SFE) of E.

John Cremona (Warwick) Numerical evidence for the BSD conjecture 9 / 31



The L-function of E/Q (continued)

L(E, s) =
∏
p-NE

(1− app−s + p1−2s)−1 ·
∏
p|NE

(1− app−s)−1 =

∞∑
n=1

an

ns

Since |ap| ≤ 2
√

p for all p - NE (Hasse), the series converges in the
half-plane <(s) > 3/2.
When p | NE we have ap = +1,−1, 0 according to whether E has
split or non-split multiplicative, or additive reduction at p.
First consequence of modularity: L(E, s) has analytic
continuation to all of C, and satisfies a functional equation relating
L(E, s) and L(E, 2− s):

ΛE(s) := Ns/2
E (2π)−s

Γ(s)L(E, s) = w(E/Q)ΛE(2− s)

where root number w(E/Q) = ±1 is the sign of the functional
equation (SFE) of E.

John Cremona (Warwick) Numerical evidence for the BSD conjecture 9 / 31



The analytic rank

In particular, it makes sense to define the analytic rank ran(E):

ran(E) := ords=1 L(E, s) (≥ 0)

The SFE is w(E/Q) = (−1)ran(E); in practice this means that the
parity of ran(E) is easy to determine.
ran(E) = 0 ⇐⇒ L(E, 1) 6= 0.
Determining the exact value of ran(E) is currently only possible
when ran(E) ≤ 3! More on this later.
How are the arithmetic rank r(E) and the analytic rank ran(E)
related?
That is the million-dollar question!
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The first Birch–Swinnerton-Dyer conjecture for elliptic
curves over Q

Conjecture (Birch and Swinnerton-Dyer, 1963)
Let E be an elliptic curve defined over Q. Then the arithmetic and
analytic ranks of E are equal:

r(E) = ran(E).

For example, this implies that E(Q) is infinite if and only L(E, 1) = 0.

We’ll see later how to verify this conjecture for a given curve: though
this is not possible in general, even in principle, for all elliptic curves
given the present state of knowledge!
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What’s known?

To date, here is what we know about the first conjecture:

Theorem (Kolyvagin; Murty & Murty; Bump, Friedberg & Hoffstein;
Coates & Wiles; Gross & Zagier)
Let E be an elliptic curve defined over Q. Then

ran(E) ≤ 1 =⇒ r(E) = ran(E).

We will see later that when ran(E) ≤ 3 it is possible (both in
principle, and in practice) to determine the value of ran(E).
We can often also determine r(E), and hence verify the conjecture
in (many) individual cases when ran(E) ≤ 3.
Further results are known about the conjecture “modulo 2”.
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We can often also determine r(E), and hence verify the conjecture
in (many) individual cases when ran(E) ≤ 3.
Further results are known about the conjecture “modulo 2”.
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The Parity conjecture

Reducing BSD modulo 2 we obtain

Conjecture (The Parity Conjecture)

r(E) ≡ ran(E) (mod 2). Equivalently, w(E/Q) = (−1)r(E).

This is much easier to verify for individual curves (by descent).
But that is hardly necessary, since . . .
Dokchitser & Dokchitser have proved many strong results in the
direction of the parity conjecture; over number fields, they show
that it follows from finiteness of the Tate-Shafarevich group X.
Over Q there is a stronger result:

Theorem (T. & V. Dokchitser 2009)

If the p-primary part of X(E/Q) is finite for at least one prime p
then the parity conjecture for E/Q holds.
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The refined conjecture

The refined, or strong form of BSD predicts the “special value” of
L(E, s) at s = 1.

This is the nonzero number cE such that (with r = ran(E))

L(E, s) ∼ cE(s− 1)r as s→ 1;

equivalently,

cE = lim
s→1

L(E, s)
(s− 1)r =

1
r!

L(r)(E, 1).

The conjectured formula for cE involves many other quantities
associated to E/Q, including the order of the Tate-Shafarevich
group X(E/Q) – whose finiteness had been conjectured around
1958-59 by Shafarevitch, Tate, Cassels, Birch and
Swinnerton-Dyer, but is not known in general.
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The second Birch–Swinnerton-Dyer conjecture for
elliptic curves over Q

Conjecture (Birch and Swinnerton-Dyer, 1963)
Let E be an elliptic curve defined over Q. Then

1 r(E) = ran(E);
2 X(E/Q) is finite, and

cE = lim
s→1

L(E, s)
(s− 1)r(E)

=
Ω(E) Reg(E)(

∏
p cp)|X(E/Q)|

|E(Q)tors|2
.

We will next explain what the various factors on the right-hand side are.
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Invariants associated to E(R) and E(Qp)

Ω(E) is the real period of E multiplied by the number of
components of E(R) ( = 1 or 2).

Equivalently, Ω(E) =
∫

E(R) ωE where (in terms of a minimal
Weierstrass model of E), ωE is the differential

ωE =
dx

2y + a1x + a3
.

This is easy to compute to any desired precision using the doubly
exponential AGM algorithm.
For each prime p, cp is the Tamagawa number [E(Qp) : E0(Qp)],
that is, the order of the group of components of E(Qp); this is 1 for
all primes of good reduction. These are easy to compute using
Tate’s algorithm (again).
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Invariants associated to E(Q)

Reg(E) is the regulator of E, which is the determinant of the height
pairing. This can be computed to any desired precision provided
that generators for the group E(Q) are known.

Finding the order of the torsion subgroup E(Q)tors is no problem.
X(E/Q) is defined as

X(E/Q) = ker

(
H1(GQ,E)→

∏
p

H1(GQp ,E)

)
.

X(E/Q) consists of twists of E, up to isomorphism, which have
rational points everywhere locally.
It is the most mysterious object in this theory, and very hard to get
one’s hands on, or even to write down elements of.
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The Tate-Shafarevich group

X(E/Q) = ker

(
H1(GQ,E)→

∏
p

H1(GQp ,E)

)
.

X(E/Q) is a torsion abelian group.

Finding |X(E/Q)| computationally is impossible in general!
Let X(p) = X(E/Q)(p) denote the p-primary part of X(E/Q).
Finding |X(E/Q)| involves finding |X(p)| for all primes p.
In practice, what one can hope to do is to show that X(p) is trivial
for p outside some finite set and then use p-descent and p-adic
methods to determine |X(p)| for the remaining primes.
The first of these steps is possible (currently) only when
ran(E) ≤ 1.
The second is often possible for individual primes, when
ran(E) ≥ 2.
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Verifying the conjecture
There are serious problems involved in verifying the conjecture for
specific curves (let alone for infinite families, or for all curves).

The strong conjecture involves the order of a group X(E/Q)
which is only known to be finite when ran(E) ≤ 1.

But the situation is better than when Tate made his famous
comment about the BSD conjecture relating the order of a group
not known to be finite with the value of a function at a point where
it is not known to be defined, since we do now know that L(E, s) is
defined for all s ∈ C!
However, the theorem of Kolyvagin et al. also states that X(E/Q)
is finite when ran(E) ≤ 1. (The statement is more precise, as we
will see later.)
For no curve of analytic rank ≥ 2 is X known to be finite; so we
have no hope of verifying BSD II in such cases. This will not stop
us talking about “numerical evidence”!
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Verifying the first conjecture
To start with let us see whether we can verify, for indiviual
curves E, that the first conjecture holds: r(E) = ran(E).

We know that this is true when ran(E) ≤ 1, but how may we
determine ran(E)?
This may seem like a problem in numerical analysis, but we can
do a lot better than just computing the value L(E, 1) numerically to
see if it looks like 0.0000.
First of all, we can compute the root number w(E/Q) exactly (as a
product of local root numbers). This tells us the parity of ran(E).
But also. . .
Second consequence of modularity: The ratio L(E, 1)/Ω(E) is a
rational number whose value may be determined exactly using
modular symbols. In particular, we can determine via a discrete
algorithm whether or not L(E, 1) is zero; equivalently, whether
ran(E) = 0.
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Determining ran(E) (continued)

Putting these together, we can determine (discretely) whether

ran(E) = 0 or ran(E) = 1, 3, 5, . . . or ran(E) = 2, 4, 6, . . . .

If ran(E) is odd then evaluating L′(E, 1) approximately can prove
that it is nonzero, and hence that ran(E) = 1 (if it is).
Similarly, if ran(E) is even and positive, then evaluating L′′(E, 1)
approximately can prove that it is nonzero, and hence that
ran(E) = 2 (if it is).
Further, if ran(E) is odd and L′(E, 1) is approximately zero, then we
can prove that it is exactly zero: by finding (at least) two
independent points in E(Q), we can show that r(E) > 1, and
hence that ran(E) > 1. Now computing L′′′(E, 1) approximately can
establish that ran(E) = 3 (if it is).
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Verifying the first conjecture: summary

If ran(E) ≤ 3 then we can find the exact value of ran(E), using
1 the root number (to obtain the parity);
2 modular symbols (to establish whether ran(E) = 0);
3 Kolyvagin and Gross-Zagier (to distinguish ran(E) = 1 from

ran(E) = 3);
4 Numerical evaluation of L(j)(E, 1).

But if ran(E) > 3 then we have no way of determining it rigorously!
If ran(E) = 4 then we can tell that it is positive and even, and
compute that L′′(E, 1) is very close to zero, but have no way of
showing that L′′(E, 1) = 0.
Similarly, If ran(E) = 5 then we can tell that it is odd and at least 3,
and compute that L′′′(E, 1) is very close to zero, but have no way
of showing that L′′′(E, 1) = 0.
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Verifying the first conjecture: examples
There are 614308 isogeny classes of elliptic curves with conductor NE ≤ 140000.

All
have ran(E) ≤ 3, and in every case ran(E) = r(E).

range of NE # r = 0 r = 1 r = 2 r = 3
0-9999 38042 16450 19622 1969 1

10000-19999 43175 17101 22576 3490 8
20000-29999 44141 17329 22601 4183 28
30000-39999 44324 16980 22789 4517 38
40000-49999 44519 16912 22826 4727 54
50000-59999 44301 16728 22400 5126 47
60000-69999 44361 16568 22558 5147 88
70000-79999 44449 16717 22247 5400 85
80000-89999 44861 17052 22341 5369 99
90000-99999 45053 16923 22749 5568 83

100000-109999 44274 16599 22165 5369 141
110000-119999 44071 16307 22173 5453 138
120000-129999 44655 16288 22621 5648 98
130000-139999 44082 16025 22201 5738 118

0-139999 614308 233979 311599 67704 1026
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A case with r = 0

The curve E = 11a1 has coefficients [0,−1, 1,−10,−20] and
conductor 11.

Using modular symbols we find that L(E, 1)/Ω(E) = 1
5 (exactly!).

So ran(E) = 0, and hence we know that ran(E) = r(E).
Also

∏
p cp = c11 = 5 and #E(Q)tors = 5.

BSD predicts that #X(E/Q) = L(E,1)/Ω(E)∏
cp/#T2 = 1/5

5/52 = 1.

This can be verified by careful application of known results: see
R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for
specific elliptic curves of analytic rank zero and one,
arXiv:1010.2431v2 [math.NT] for details of this and similar
examples, including all curves of rank at most 1 and conductor
less than 5000. Or . . .
sage: EllipticCurve(’11a1’).prove BSD()!

John Cremona (Warwick) Numerical evidence for the BSD conjecture 24 / 31



A case with r = 0

The curve E = 11a1 has coefficients [0,−1, 1,−10,−20] and
conductor 11.
Using modular symbols we find that L(E, 1)/Ω(E) = 1

5 (exactly!).
So ran(E) = 0, and hence we know that ran(E) = r(E).

Also
∏

p cp = c11 = 5 and #E(Q)tors = 5.

BSD predicts that #X(E/Q) = L(E,1)/Ω(E)∏
cp/#T2 = 1/5

5/52 = 1.

This can be verified by careful application of known results: see
R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for
specific elliptic curves of analytic rank zero and one,
arXiv:1010.2431v2 [math.NT] for details of this and similar
examples, including all curves of rank at most 1 and conductor
less than 5000. Or . . .
sage: EllipticCurve(’11a1’).prove BSD()!

John Cremona (Warwick) Numerical evidence for the BSD conjecture 24 / 31



A case with r = 0

The curve E = 11a1 has coefficients [0,−1, 1,−10,−20] and
conductor 11.
Using modular symbols we find that L(E, 1)/Ω(E) = 1

5 (exactly!).
So ran(E) = 0, and hence we know that ran(E) = r(E).
Also

∏
p cp = c11 = 5 and #E(Q)tors = 5.

BSD predicts that #X(E/Q) = L(E,1)/Ω(E)∏
cp/#T2 = 1/5

5/52 = 1.

This can be verified by careful application of known results: see
R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for
specific elliptic curves of analytic rank zero and one,
arXiv:1010.2431v2 [math.NT] for details of this and similar
examples, including all curves of rank at most 1 and conductor
less than 5000. Or . . .
sage: EllipticCurve(’11a1’).prove BSD()!

John Cremona (Warwick) Numerical evidence for the BSD conjecture 24 / 31



A case with r = 0

The curve E = 11a1 has coefficients [0,−1, 1,−10,−20] and
conductor 11.
Using modular symbols we find that L(E, 1)/Ω(E) = 1

5 (exactly!).
So ran(E) = 0, and hence we know that ran(E) = r(E).
Also

∏
p cp = c11 = 5 and #E(Q)tors = 5.

BSD predicts that #X(E/Q) = L(E,1)/Ω(E)∏
cp/#T2 = 1/5

5/52 = 1.

This can be verified by careful application of known results: see
R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for
specific elliptic curves of analytic rank zero and one,
arXiv:1010.2431v2 [math.NT] for details of this and similar
examples, including all curves of rank at most 1 and conductor
less than 5000. Or . . .
sage: EllipticCurve(’11a1’).prove BSD()!

John Cremona (Warwick) Numerical evidence for the BSD conjecture 24 / 31



A case with r = 0

The curve E = 11a1 has coefficients [0,−1, 1,−10,−20] and
conductor 11.
Using modular symbols we find that L(E, 1)/Ω(E) = 1

5 (exactly!).
So ran(E) = 0, and hence we know that ran(E) = r(E).
Also

∏
p cp = c11 = 5 and #E(Q)tors = 5.

BSD predicts that #X(E/Q) = L(E,1)/Ω(E)∏
cp/#T2 = 1/5

5/52 = 1.

This can be verified by careful application of known results: see
R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for
specific elliptic curves of analytic rank zero and one,
arXiv:1010.2431v2 [math.NT] for details of this and similar
examples, including all curves of rank at most 1 and conductor
less than 5000. Or . . .

sage: EllipticCurve(’11a1’).prove BSD()!

John Cremona (Warwick) Numerical evidence for the BSD conjecture 24 / 31



A case with r = 0

The curve E = 11a1 has coefficients [0,−1, 1,−10,−20] and
conductor 11.
Using modular symbols we find that L(E, 1)/Ω(E) = 1

5 (exactly!).
So ran(E) = 0, and hence we know that ran(E) = r(E).
Also

∏
p cp = c11 = 5 and #E(Q)tors = 5.

BSD predicts that #X(E/Q) = L(E,1)/Ω(E)∏
cp/#T2 = 1/5

5/52 = 1.

This can be verified by careful application of known results: see
R. L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for
specific elliptic curves of analytic rank zero and one,
arXiv:1010.2431v2 [math.NT] for details of this and similar
examples, including all curves of rank at most 1 and conductor
less than 5000. Or . . .
sage: EllipticCurve(’11a1’).prove BSD()!

John Cremona (Warwick) Numerical evidence for the BSD conjecture 24 / 31



A case with r = 1
The curve E = 12480o1 has coefficients [0,−1, 0,−260,−1530] and
conductor 12480 = 26 · 3 · 5 · 13.

The root number is −1, so ran(E) is odd.
L′(E, 1) = 4.258599 . . . (approximately), so ran(E) = 1.
2-descent verifies that r(E) = 1 and gives the generator (27, 102)
whose canonical height is Reg(E) = 3.5830 . . . . It also shows that
X(E/Q)[2] has order 4.
An AGM computation shows that Ω(E) = 1.1885495 . . . ; now
L′(E, 1)/(Ω(E) Reg(E)) = 1.0000000000 . . . .
Using Gross-Zagier this value can be shown to be exactly 1.
We have

∏
cp = 1 and #E(Q)tors = 2.

BSD predicts that #X(E/Q) = L′(E,1)/Reg(E)Ω(E)∏
cp/#T2 = 1

1/22 = 4.

Kolyvagin gives #X(E/Q) finite with no odd part.
BSD holds!
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An AGM computation shows that Ω(E) = 1.1885495 . . . ; now
L′(E, 1)/(Ω(E) Reg(E)) = 1.0000000000 . . . .
Using Gross-Zagier this value can be shown to be exactly 1.
We have

∏
cp = 1 and #E(Q)tors = 2.

BSD predicts that #X(E/Q) = L′(E,1)/Reg(E)Ω(E)∏
cp/#T2 = 1

1/22 = 4.

Kolyvagin gives #X(E/Q) finite with no odd part.
BSD holds!
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A case with r = 2

E = 389a1 = [0, 1, 1,−2, 0] has conductor 389.

wE = +1, so ran(E) is even. Modular symbols show that ran(E) 6= 0.
L′′(E, 1) = 1.51863300057685 . . . (approximately), so ran(E) = 2.
r(E) = 2 by 2-descent, which finds generators (0,−1) and (−1, 1)
with Reg(E) = 0.152460 . . . , and also that X(E/Q)[2] = 0.
Ω(E) = 4.980425 . . .

Hence L′′(E, 1)/(2!Ω(E) Reg(E)) = 1.0000000000 . . . .
This is approximate: the ratio is not known to be rational!
We have

∏
cp = 1 and #E(Q)tors = 1.

BSD predicts that #X(E/Q) = L′′(E,1)/2 Reg(E)Ω(E)∏
cp/#T2 = 1.

So BSD holds for E if X(E/Q)[p] = 0 for all odd p, and
the above ratio is exactly 1.
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A case with r = 3
E = 234446a1 = [1, 1, 0,−696, 6784] has conductor 234446.

wE = −1, so ran(E) is odd.
|L′(E, 1)| < 10−22 so we suspect ran(E) ≥ 3.
r(E) = 3 by 2-descent, which finds generators (15,−7), (16,−16)
and (19, 20) with Reg(E) = 2.159011 . . . , and also that
X(E/Q)[2] = 0.
So (Kolyvagin, Gross-Zagier) ran(E) > 1. Now
L′′′(E, 1) = 59.09365958 . . . (approximately) implies ran(E) = 3.
Ω(E) = 2.2808923 . . . and hence
L′′′(E, 1)/(3!Ω(E) Reg(E)) = 2.0000000000 . . . (approximately).
We have

∏
cp = 2 · 1 = 2 and #E(Q)tors = 1.

BSD predicts that #X(E/Q) = L′′′(E,1)/6 Reg(E)Ω(E)∏
cp/#T2 = 1.

Again, BSD holds for E if X(E/Q)[p] = 0 for all odd p, and the
above ratio is exactly 2.
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A case with r = 4
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Summary for curves in the database

My database currently contains all elliptic curves E of conductor
NE < 140000, and for each one it gives all the numbers which appear in
the BSD formula, with the “analytic order of X”, Xan(E/Q), in place of
|X(E/Q)|. This is just the value predicted by BSD, rounded.

In all cases Xan(E/Q) is an integer (when ran(E) = 0) or approximately
an integer (when ran(E) ≥ 1), and the integer is a square.

The value is 1 in 93.31% of the cases, including all the curves of rank
greater than 1.

The largest value is 784 = 282, for
138437c1 = [1, 1, 0,−6193920002885,−5933305228440879554]
(which has E(Q) = 0).

All primes up to 23 appear as factors.
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Some details of the modular symbol contribution
Let fE be the newform in S2(N) attached to E.

For α, β ∈ H∗ = H ∪Q ∪ {∞}, let {α, β} denote a geodesic path from
α to β, and 〈{α, β}, f 〉 =

∫ β
α 2πif (z)dz.

We have L(E, 1) = L(fE, 1) = 〈{∞, 0}, f 〉.

The Hecke operator Tp satisfies
〈Tp{α, β}, f 〉 = 〈{α, β},Tpf 〉 = 〈{α, β}, apf 〉 = ap 〈{α, β}, f 〉.

Applying this with {α, β} = {∞, 0}, where
(Tp − p− 1){∞, 0} =

∑
x{0, x/p} we find that

(1 + p− ap)L(E, 1) = npΩ(E)

for some np ∈ Z. Hence

L(E, 1)

Ω(E)
=

np

1 + p− ap
∈ Q.
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Example: N = 11

Let E = 11a1.

Ω(E) =
〈
{1

2 , 0}, f
〉
.

From T2{∞, 0} =

((
2 0
0 1

)
+

(
1 0
0 2

)
+

(
1 1
0 2

))
{∞, 0} =

{∞, 0}+ {∞, 0}+ {∞, 1
2} = 3{∞, 0}+ {0, 1

2}, it follows that
(3− a2)L(E, 1) = Ω(E).

But a2 = −2, so L(E, 1)/Ω(E) = 1/5.
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