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Diophantine geometry and abelian cohomology

E: elliptic curve over a number field F.

Kummer theory:
E(F)® Zp — H}(G, T,(E))

conjectured to be an isomorphism.
Should allow us, in principle, to compute E(F).

Furthermore, size of H}(G, T,(E)) should be controlled by an
L-function.



In the theorem

L(E/Q,1) # 0 = |E(Q)| < oo,
key point is that the image of

locy : HE (G, Tp(E)) — H(Gp, Tp(E))
is annihilated using Poitou-Tate duality by a class
c € HY(G, To(E))

whose image in

H'(Gp, To(E))/Ht (Gp, To(E))

is non-torsion.
An explicit local reciprocity law then translates this into an analytic
function on E(Qp) that annihilates £(Q).



Wish to investigate an extension of this phenomenon to hyperbolic
curves. That is, curves of

-genus zero minus at least three points;
-genus one minus at least one point;

-genus at least two.



Notation

F: Number field.
So: finite set of primes of F.
R := Of[1/So], the ring of S integers in F.

p: odd prime not divisible by primes in Sp; v: a prime of F above p
with F, = Qp..

G := Gal(F/F).

Gs := Gal(Fs/F), where Fs is the maximal extension of F
unramified outside S = Sy U {v|p}.

X smooth curve over Spec(R) with good compactification.
(Might be compact itself.)

X: generic fiber of X', assumed to be hyperbolic.
b € X(R), possibly tangential.



Unipotent descent tower




Unipotent descent tower

H}(G’ U4)

!

H} (G, Us)

!

H}(G’ U2)

!

H} (G, Uy)

Here,
jix € X(R)— [P(x)] € H}G, U),

is the Qp-unipotent étale period map.



Unipotent descent tower

U is the Qp-pro-unipotent étale fundamental group of
X = X Xgpec(r) Spec(F)

with base-point b.

A linearization of the profinite étale fundamental group #1(X, b):

U= "#(X,b)®Q,".



Unipotent descent tower

U, = U”*l\U, where U" is the lower central series with Ut = U.

So U1 = Uab = TpJX ®Qp-

P(x) := #1(X; b, x) X2, (x,b) U, is the U-torsor of Qp-unipotent
étale paths from b to x, viewed as a function of x.

All these objects have natural actions of G.

H} refers to continuous non-abelian cohomology of G with
coefficients in U satisfying local 'Selmer conditions’.



Localization




Localization

H} (G, Uy) —* HF(Gy, Un)

Goal:
Compute the image of loc,.



Local period map

One essential fact is that the local map
X(R,) —2+ H(G,, U,)

can be computed via a diagram
X(Ry)
v
HY(G,, Uy) — UPR/FO ~ AN
where UPR/FO is a homogeneous space for the De

Rham-crystalline fundamental group, and the map jPR can be
described explicitly using p-adic iterated integrals.



Non-abelian method of Chabauty

Meanwhile, the localization map is an algebraic map of varieties
over Q, making it feasible, in principle, to discuss its computation.



Non-abelian method of Chabauty

Meanwhile, the localization map is an algebraic map of varieties
over Q, making it feasible, in principle, to discuss its computation.

Knowledge of
Im(loc,) € HXG,, U,)

will lead to knowledge of
X(R) C [j,] Y (Im(loc,)) € X(R,).

For example, when Im(loc, ) is not Zariski dense, immediately
deduce finiteness of X'(R).



Non-abelian method of Chabauty

This deduction is captured by the diagram

X(R) X(Ry)

et

Jv

loc,

H}(G7 Uﬂ) - H}(Gw Un)

T #£0

Qo
such that v o j€ kills X(R).



Some cases of Diophantine finiteness

Can use this to give a new proof of finiteness of points in some
cases:

F = Q and the Jacobian of X has potential CM. (joint with John
Coates)

F = Q and X, elliptic curve minus one point.

F totally real and X of genus zero.



Some cases of Diophantine finiteness

Can use this to give a new proof of finiteness of points in some
cases:

F = Q and the Jacobian of X has potential CM. (joint with John
Coates)

F = Q and X, elliptic curve minus one point.

F totally real and X of genus zero.

But would like to construct 1) in some canonical fashion.
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Non-abelian duality?

Alternatively, Im(loc,) should be computed using a sort of
non-abelian Poitou-Tate duality.

In the elliptic curve case, we know that Poitou-Tate duality is the
basic tool for computing the global image inside local cohomology.
Would like a non-abelian analogue.

Duality for Galois cohomology with coefficients in various
non-abelian groups should also be interpreted as a sort of
non-abelian class field theory.



Non-abelian duality: example

E/Q: elliptic curve with
rankE(Q) =1,
trivial Tamagawa numbers, and
[II(E)[p™]| < o0
for a prime p of good reduction.
X =: E\ {0} given as a minimal Weierstrass model:
y2 + a1xy + a3y = x3 + 32X2 + asx + ag.

So
X(Z) c E(Z) = E(Q).



Non-abelian duality: example
Let
a=dx/(2y + aix + a3), [ = xdx/(2y + aix + a3).

Get analytic functions on X(Q)),

log,(z) = /bz o; logg(z) = /bz B;

D(z) = /b 0.

Here, b is a tangential base-point at 0, and the integral is (iterated)
Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while for
the iteration,

dDzz(/bzﬁ)a.



Non-abelian duality: example

Theorem

Suppose there is a point y € X(Z) of infinite order in E(Q). Then
the subset

X(Z) c X(Qp)
lies in the zero set of the analytic function

2) Z_Dz()/) Zaz
4(2) = 0a2) ~ ([ e




Non-abelian duality: example

Theorem

Suppose there is a point y € X(Z) of infinite order in E(Q). Then
the subset

X(Z) Cc X(Qp)

lies in the zero set of the analytic function

2) Z_Dz()/) Zaz
4(2) = 0a2) ~ ([ e

A fragment of non-abelian duality and explicit reciprocity.



Non-abelian duality: example

Function 1 is actually a composition
1 ¢
X(Zp) — H(Gp, Vo) —— Qp

A\

12

U2DR/FO

where ¢ is constructed using secondary cohomology products and
has the property that

dllocy(H (G, Up))) = 0.



Non-abelian duality: example

X(Z) —— HE (G, Us)




Non-abelian duality: example

U~V x Qp(l)
where V = T,(E) ® Qp, with group law
(X,a)(Y,b)=(X+Y,a+b+(1/2) < X, Y >).

A function
a=(a;,a): Gp—Us

is a cocycle if and only if

day =0; dap = —(1/2)[a1, a1].



Non-abelian duality: example

For a = (a1, a2) € H}(Gp, Uz), we define

¢(a1, a2) := [b, a1] + log xp U (—2a2) € H*(Gp, Qp(1)) =~ Qp,



Non-abelian duality: example

For a = (a1, a2) € H}(Gp, Uz), we define

¢(a1, a2) := [b, a1] + log xp U (—2a2) € H*(Gp, Qp(1)) =~ Qp,

where
log xp : Gp—Qp

is the logarithm of the p-adic cyclotomic character and
b: GV
is a solution to the equation

db = log xp U a.



Non-abelian duality: example

The annihilation comes from the standard exact sequence

0—H?(G,Qu(1))— ZH2 Gy, Qp(1))—=Q,—0.

That is, our assumptions imply that the class
[71(X; b, x)]2

for x € X(Z) is trivial at all places | # p.
On the other hand

o(locy([m1(X: b, x)]2)) = locy(¢5°([m1(X; b, x)]2))-



Non-abelian duality: example

With respect to the coordinates
H}(Gp, Un) ~ UPR/FO ~ A% = {(s,t)}

the image
loco(HA(G, Un)) € HE(Gp, Up)

is described by the equation

_ Da(y) 2 —
(Jy @)?




Non-abelian duality: abstract framework

Let
L= @ne(n) L,

graded Lie algebra over field k. The map D : L—L such that
D|L,=n

is a derivation, i.e., an element of H(L, L). Can be viewed as an
element of H?(L* x L, k), that is, a central extension of L* x L:

0 k E’ L*xL——0.
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Explicitly described as follows:
[(a, ., X), (b, B, V)] = (a(D(Y))—B(D(X)), adx (8)—ady (), [X, Y]).

When L = Ly and D =/, then this gives a standard Heisenberg
extension.



Non-abelian duality: abstract framework

Explicitly described as follows:
[(a, ., X), (b, B, V)] = (a(D(Y))—B(D(X)), adx (8)—ady (), [X, Y]).

When L = Ly and D =/, then this gives a standard Heisenberg

extension.
When k = Q, and we are given an action of G or G,, can twist to

0— Qp(l) — E— L*(1) x L —0.
Also have a corresponding group extension
0 — Qp(1) — & — L*(1) x U—0.

(L = Lie(U))



Non-abelian duality: abstract framework

From this, we get a boundary map
% é
HY(Gy, L*(1) x U) — H?*(G,,Qp(1)) ~ Q.

This boundary map should form the basis of (unipotent)
non-abelian duality.



Non-abelian duality: abstract framework

From this, we get a boundary map
% é
HY(Gy, L*(1) x U) — H?*(G,,Qp(1)) ~ Q.

This boundary map should form the basis of (unipotent)
non-abelian duality.

HY(Gy, L (1)) — HM(Go, L*(1) % U) 2 @,

HY(G,, V)



Non-abelian duality: difficulties

1. We would like a function on
HF (G, V),

depending on a class in H}(G,, L*(1)). Hence, need some splitting
of
HY(G,, L*(1) x U) — HY(G,, V).



Non-abelian duality: difficulties

1. We would like a function on
HF (G, V),

depending on a class in H}(G,, L*(1)). Hence, need some splitting
of
HY(G,, L*(1) x U) — HY(G,, V).

2. When U is a unipotent fundamental group, L is not graded in
way that's compatible with the Galois action.
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This second difficulty is resolved by Hain's theory of weighted
completions.
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Non-abelian duality: more algebraic completions

This second difficulty is resolved by Hain's theory of weighted
completions.

For the subsequent discussion, v is any prime in S.
Let R, be the Zariski closure of the image of

G,—Aut(H1(X,Qp)).

Assume G, C R,.
Key statement:
HY(Gy, U) = HY(Gy, U)) =~ H(Grw(Gy), Grw (U))

where G, is the weighted completion of G,.



Non-abelian duality: more algebraic completions

Basic idea:

Consider the universal pro-algebraic extension

0—T,—G,—R,—0
equipped with a lift
Gy
G, R

such that T, is pro-unipotent and the action of G, on Hi(T,) has
negative weights.



Non-abelian duality: more algebraic completions

Note: Similar compatible construction Gs for Gs:




Non-abelian duality: more algebraic completions

Then
H(Gs, U) =~ H'(Gs, V)
) )
HY(G,, Gr"(U)) =~ HY(G,,Gr"(U)).
H(Gs, L*(1) x U) = HY(Gs, Gr'(L*(1)) x Gr'V(V))
) )
HY(G,,L*(1) x U) ~ HYG,, Gr'"(L*(1)) x Gr'V(U)).

and
HY(Gs, GrV (L*(1))x GrV (U)) ~ HY(Grw (Gs), Gr™V (L* (1))« Gr'V (V));

HY(G,, GrY (L* (1))« Gr'Y (U)) ~ HY(Grw(G,), Gr'V (L* (1))« GrV (U))



Non-abelian duality: more algebraic completions

Recalling the interpretation of H1(G,, U) as the splittings of
0—U—U x G,—G,—0,
we find there are isomorphisms
HY(Gy, U) ~ Splity (Gryw (LieGy), Grw (L) x Gry/(LieG,)).
HY(G,,L*(1) x U) ~
Splitw (Gry (LieG, ), Grw (L*(1)) x Grw /(L) x Grw/(LieG,)).



Non-abelian duality: more algebraic completions

Theorem
There is a canonical central extension

0—Qp(1)—=E—Grw (L*(1)) x Grw(L) x Gry/(LieG,)—0
giving rise to a boundary map
HY(G,, L*(1) x V)

~ Splity (Grw(LieG,), Grw (L*(1)) x Gry/ (L) x Gry/(LieG,))
—H?(G,,Q,(1)).



Non-abelian duality: more algebraic completions

Managed to construct the diagram

HY(G,, L*(1)) — HY(G,,L*(1) x U) O, Qp

HY(G,, V)

in general.



Non-abelian duality: more algebraic completions

Theorem
The image of
H*(Gs, L*(1) x U)
in
[T H (G, L*(1) x U)
veS

is annihilated by

Z(sv.



