Genus 3 covers of elliptic curves

Davide Lombardo, Elisa Lorenzo-García, Jeroen Sijsling

28 March 2017
Consider a map

\[C \xrightarrow{d \to 1} E \]

with \(C \) of genus 3 and \(E \) an elliptic curve.
Consider a map

$$C \xrightarrow{d \to 1} E$$

with C of genus 3 and E an elliptic curve (everything defined over $\overline{\mathbb{Q}}$)
Consider a map

\[C \xrightarrow{d \to 1} E \]

with \(C \) of genus 3 and \(E \) an elliptic curve (everything defined over \(\overline{\mathbb{Q}} \)).

Up to isogeny, we have either

1. \(\text{Jac}(C) \sim E \times E_2 \times E_3 \), or
Consider a map
\[C \xrightarrow{d-\text{to}-1} E \]
with \(C \) of genus 3 and \(E \) an elliptic curve (everything defined over \(\overline{\mathbb{Q}} \)).
Up to isogeny, we have either

1. \(\text{Jac}(C) \sim E \times E_2 \times E_3 \), or
2. \(\text{Jac}(C) \sim E \times \text{Jac}(X) \) with \(X \) of genus 2
Goal

Decide in which case we are
Goal

1. Decide in which case we are
2. Find E_2, E_3 or X.

Remark
Finding E_2, E_3 is as hard as finding E, and we know how to do that.
Goal

- Decide in which case we are
- Find E_2, E_3 or X.

Remark

Finding E_2, E_3 is as hard as finding E, and we know how to do that.
What would this be good for?

1. Point counting
What would this be good for?

1. Point counting
2. Endomorphism verification
What would this be good for?

1. Point counting
2. Endomorphism verification
3. Prym-like varieties
What is known: split degree 2

Theorem (Ritzenthaler–Romagny)

Suppose

\[C : y^4 - h(x, z)y^2 + f(x, z)g(x, z) = 0 \]
What is known: split degree 2

Theorem (Ritzenthaler–Romagny)

Suppose

\[C : y^4 - h(x, z)y^2 + f(x, z)g(x, z) = 0 \]

and

\[E : y^2 - h(x, z)y + f(x, z)g(x, z) = 0. \]
What is known: split degree 2

Theorem (Ritzenthaler–Romagny)

Suppose

\[C : y^4 - h(x, z)y^2 + f(x, z)g(x, z) = 0 \]

and

\[E : y^2 - h(x, z)y + f(x, z)g(x, z) = 0. \]

If \(\text{Aut}(C) = \mathbb{Z}/2\mathbb{Z} \) one can explicitly write down a genus 2 curve \(X \) such that \(\text{Jac}(C) \sim E \times \text{Jac}(X) \).
What is known: split degree 2

Theorem (Ritzenthaler–Romagny)

Suppose

\[C : y^4 - h(x, z)y^2 + f(x, z)g(x, z) = 0 \]

and

\[E : y^2 - h(x, z)y + f(x, z)g(x, z) = 0. \]

If \(\text{Aut}(C) = \mathbb{Z}/2\mathbb{Z} \) one can explicitly write down a genus 2 curve \(X \) such that \(\text{Jac}(C) \sim E \times \text{Jac}(X) \). \(X \) is defined over the same field as \(C \).
Suppose $C \to E$ is Galois with "large" automorphism group – i.e. D_4, Q_8, S_3. Then $\text{Jac}(C)$ is the product of three elliptic curves.
Suppose $C \rightarrow E$ is Galois with "large" automorphism group – i.e. D_4, Q_8, S_3. Then $\text{Jac}(C)$ is the product of three elliptic curves.

This is not necessarily the case if the automorphism group of the covering is $\mathbb{Z}/2\mathbb{Z}$.
Galois cases

- Suppose \(C \rightarrow E \) is Galois with "large" automorphism group – i.e. \(D_4, Q_8, S_3 \). Then \(\text{Jac}(C) \) is the product of three elliptic curves.
- This is not necessarily the case if the automorphism group of the covering is \(\mathbb{Z}/2\mathbb{Z} \).
- When the group is \(\mathbb{Z}/3\mathbb{Z} \), the abelian surface has QM.
The elliptic curve E is canonically an abelian subvariety of $\text{Jac}(C)$.
The elliptic curve E is canonically an abelian subvariety of $\text{Jac}(C)$. There is a canonical abelian surface $\nu_A : A \hookrightarrow \text{Jac}(C)$ such that $A \times E \to \text{Jac}(C)$ is an isogeny.

Question

Let Θ be the theta divisor of $\text{Jac}(C)$. What is the degree of the polarization $\nu_A^* A \Theta$?
The elliptic curve E is canonically an abelian subvariety of $\text{Jac}(C)$. There is a canonical abelian surface $\iota_A : A \hookrightarrow \text{Jac}(C)$ such that $A \times E \rightarrow \text{Jac}(C)$ is an isogeny.

Question

Let Θ be the theta divisor of $\text{Jac}(C)$. What is the degree of the polarization $\iota_A^\ast \Theta$?
Partial answer

There is a d-isogeny $A \to A'$ with A' principally polarized.
Partial answer

There is a d-isogeny $A \to A'$ with A' principally polarized (hence a Jacobian or a product of two elliptic curves).
Partial answer

There is a (non-canonical!) d-isogeny $A \rightarrow A'$ with A' principally polarized (hence a Jacobian or a product of two elliptic curves).
Partial answer

There is a (non-canonical!) \(d \)-isogeny \(A \to A' \) with \(A' \) principally polarized (hence a Jacobian or a product of two elliptic curves).

Question

Is the isogeny defined over the same field as \(C \to E \)?
From $C \to E$ determine a period matrix of C, hence of A.

Genus 3 covers
Reconstruction: analytic approach

- From $C \rightarrow E$ determine a period matrix of C, hence of A
- Determine an isogeny $A \rightarrow A'$ with A' principally polarized
Reconstruction: analytic approach

- From $C \to E$ determine a period matrix of C, hence of A
- Determine an isogeny $A \to A'$ with A' principally polarized
- Write down the period matrix of $A' = \text{Jac}(X)$
Reconstruction: analytic approach

- From $C \to E$ determine a period matrix of C, hence of A
- Determine an isogeny $A \to A'$ with A' principally polarized
- Write down the period matrix of $A' = \text{Jac}(X)$
- Reconstruct X from A' (Guàrdia)