DIOPHANTINE EQUATIONS

September 15–19 2015, Baskerville Hall, Hay-on-Wye

ELLIPTIC CURVES

1. Show that $y^2 + y = x^3 - x$ has infinitely many rational solutions. (You may assume that the curve is smooth over \mathbb{Q} and over \mathbb{F}_p for all primes $p \neq 37$.)

(*Hint: Prove that it has no non-trivial points of finite order.*)

2. Let E/\mathbb{Q} be the elliptic curve given by $y^2 = (x+1)(x+4)(x-5)$.

(i). Prove that the group of rational points is isomorphic to $C_2 \times C_2 \times \mathbb{Z}$. You may find it helpful to note that Q = (-3, 4) lies on the curve.

(*Hint:* Bound the torsion by reducing the curve modulo 5 and modulo 7. Find the rank by doing 2-descent and bounding the image by looking at $E(\mathbb{R})$ and $E(\mathbb{Q}_3)$.)

(ii). Find all rational solutions to the equation defining E. You may assume that for this curve

$$-5.60 \le h(P) - \hat{h}(P) \le 1.58$$

for all $P \in E(\mathbb{Q})$, and may find it helpful to know that 10Q has x-coordinate

 $\frac{661822357518174342999917659646891158606732140305553705}{31166866709725719871202723091110962265223527659785616}.$

(*Hint: Find an upper bound on* h(R) for the generator R of the copy of Z in $E(\mathbb{Q})$.)

3. (i). Let $E: y^2 = f(x)$ be an elliptic curve, $K = \mathbb{Q}(\sqrt{d})$ a quadratic extension, and E_d the curve $dy^2 = f(x)$, the quadratic twist of E by d. Show that

 $\operatorname{rk} E/\mathbb{Q}(\sqrt{d}) = \operatorname{rk} E/\mathbb{Q} + \operatorname{rk} E_d/\mathbb{Q}.$

(ii). Although the following holds true for all elliptic curves over all number fields and in all quadratic extensions, it is slightly easier to do one explicit example. Take

$$E/\mathbb{Q}: y^2 = x^3 - x \qquad (\Delta_E = 64),$$

and show that

$$L(E/\mathbb{Q}(\sqrt{-3}),s) = L(E/\mathbb{Q},s)L(E_{-3}/\mathbb{Q},s).$$

4^{*}. Assuming either the Birch–Swinnerton-Dyer conjecture or finiteness of the Tate-Shafarevich group show that there is algorithm to determine whether a polynomial equation f(x, y) = 0 with \mathbb{Z} -coefficients has infinitely many rational solutions.