HILBERT'S TENTH PROBLEM

- (1) By a computable function, we mean a function $F : \mathbb{Z} \to \mathbb{N}$ that can be simulated by an algorithm. Show that there exists a polynomial $p(t, \vec{x})$ such that for any computable function $F : \mathbb{Z} \to \mathbb{N}$, there exists $a \in \mathbb{Z}$ such that $p(a, \vec{x}) = 0$ has a solution $\vec{x} \in \mathbb{Z}^n$, but no solution with max $|x_i| < F(a)$.
- (2) Recall Mazur's conjecture, which states that if X is a variety over \mathbb{Q} , then the topological closure of $X(\mathbb{Q})$ in $X(\mathbb{R})$ has at most finitely many connected components. Show that if \mathbb{Z} is diophantine in \mathbb{Q} , then Mazur's conjecture is false.
- (3) Recall that a set $A \subseteq \mathbb{R}^n$ is *diophantine* if there exists a polynomial $p(\vec{t}, \vec{x}) \in R[t_1, \ldots, t_n, x_1, \ldots, x_m]$ such that

$$A = \{ \vec{a} \in R^n : (\exists \vec{x} \in R^m) (p(\vec{a}, \vec{x}) = 0) \}.$$

Having a large dictionary of diophantine sets was essential in proving the DPRM theorem, and it will be useful in determining, for example, whether \mathbb{Z} is diophantine in \mathbb{Q} . Show that the following sets are diophantine:

- (a) The sum of two diophantine sets $A, B \subseteq \mathbb{Z}^n$ (where $A + B := \{a + b : a \in A, b \in B\}$).
- (b) The intersection (or union) of two diophantine sets $A, B \subseteq \mathbb{Z}^n$.
- (c) The set of nonzero integers in \mathbb{Z} .
- (d) The set $\{(x, y) : x \leq y\}$ in \mathbb{Z}^2 .
- (e) The set $\{(x, y, z) : \gcd(x, y) = z\}$ in \mathbb{Z}^3 .
- (f) ¹The set of nonsquare integers in \mathbb{Z} .
- (g) ²The localization ring $\mathbb{Z}_{(p)}$ in \mathbb{Q} for a fixed prime p.

¹These last two problems are actually pretty hard. See Theorem 1.1 of *The set of nonsquares in a number* field is diophantine (Poonen).

²See Lemma 2.5 of *Characterizing integers among rational numbers with a universal-existential formula* (Poonen), if you don't care about the size of the defining equation, or Proposition 8 of *Defining* \mathbb{Z} *in* \mathbb{Q} (Koenigsmann) for a simpler formula.