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2 ALEXEI SKOROBOGATOV

Introduction

The aim of these lectures is to give examples of algebraic varieties for which
the local-to-global approach to (the existence and approximation of) rational
points can be made to work, and to sketch bits of relevant theories.

The basic paradigm of such a variety is a smooth plane conic C ⊂ P2
Q:

ax2 + by2 + cz2 = 0, (0.1)

where a, b, c ∈ Q∗. Legendre’s theorem [10, 4.3.2 Thm. 8 (ii)] gives a
necessary and sufficient condition for the solubility of (0.1) in Q. It implies
that the Hasse principle holds for smooth plane conics over Q. By the classical
stereographic projection, a conic C with a rational point is isomorphic to
the projective line, so describing all rational points on it is straightforward.
Equally straightforward is to approximate local points Mp ∈ C(Qp) for finitely
many primes p, by a rational point M ∈ C(Q) (reduce to the affine line and
then use the independence of valuations in a number field; in the case of Q
this is just the Chinese remainder theorem).

Minkowski and Hasse generalised this to arbitrary number fields k and
to non-degenerate quadratic forms in any number of variables. Going from
dimension 1 to dimension 2 uses a reciprocity law from class field theory,
but going from dimension n to dimension n + 1 becomes easy when n ≥ 3.
The idea is to consider conics, quadrics or some other varieties for which
the Hasse principle and weak approximation are already established, in a
family parameterised by P1

k, and try to deduce the Hasse principle and weak
approximation for the total space of this family.

Developing this idea we encounter the Brauer–Manin obstruction to the
Hasse principle and weak approximation. Indeed, Iskovskih’s counterexample

x2 + y2 = (t2 − 2)(3− t2)

shows that the Hasse principle does not hold for 1-parameter families of conics
over Q. So we won’t be able to prove the existence of rational points unless
certain conditions provided by the elements of the Brauer–Grothendieck group
of the variety are satisfied.

So we start Lecture One of this mini-course with an introduction to the
Brauer group and the Brauer–Manin obstruction.

The arithmetic of surfaces and threefolds that can be represented as 1-
parameter families of conics and quadrics will be the main subject of Lecture
Two. Rational points have to ultimately come from somewhere. In easier
cases this can be done by algebraic methods, but in general one will have to
use counting results established by difficult analytic methods.

Finally, in Lecture Three we want to go beyond conic bundles which, being
geometrically rational surfaces, belong to a very special class of varieties. We
give a very short survey of some recent results for K3 surfaces. We also discuss
Enriques surfaces (which are not geometrically simply connected). This dis-
cussion will lead us to the refinement of the Brauer–Manin obstruction, the so
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called étale Brauer–Manin obstruction. However, there exist counterexamples
to the Hasse principle not detected even by this strongest general obstruction
we know today. The first such was constructed by Poonen. We give a simple
construction due to Colliot-Thélène, Pál and the lecturer which is based on
Poonen’s trick.

1. Brauer–Grothendieck group

Let k be a field with an algebraic closure k̄ and Γ = Gal(k̄/k).

1.1. Two definitions the Brauer group. References: [4], [11], [14]

Recall that Br(k) consists of the equivalence classes of central simple k-
algebras (CSA). A k-algebra A is a CSA if A ⊗k k̄ is isomorphic to a matrix
algebra Mn(k̄) for some positive integer n. In other words, a CSA is a k̄/k-
form of Mn(k) for some n. A key example of a CSA over R not isomorphic to
a matrix algebra is the algebra of Hamilton’s quaternions R⊕Ri⊕Rj ⊕Rij,
where i2 = j2 = −1 and ij = −ji. If k is a field of characteristic different
from 2 and a, b ∈ k∗, then the quaternion algebra Q(a, b) = k ⊕ ki⊕ kj ⊕ kij,
where i2 = a, j2 = b and ij = −ji, is a CSA1. CSAs A and B are equivalent
if Mn(A) ∼= M`(B) for some positive integers n and ` (this is called Brauer, or
Morita, equivalence). We denote by [A] the equivalence class of A. We write
(a, b) ∈ Br(k) for the class of the quaternion algebra Q(a, b). It can be shown
that Q(a, b)⊗k Q(a, b) ∼= M4(k) (see the appendix), hence (a, b) ∈ Br(k)[2].

The group structure on Br(k) is defined by the tensor product of algebras;
the neutral element is the class of matrix algebras; the inverse element is
given by the opposite algebra (with inverted order of multiplication). Using
the Skolem–Noether theorem (which says that all automorphisms of a matrix
algebra are inner, i.e. are conjugations by invertible matrices) one canonically
identifies the k̄/k-forms of Mn(k) with the (non-abelian) Galois cohomology
set H1(k,PGLn). The exact sequence

1→ k̄∗ → GLn(k̄)→ PGL(k̄)→ 1

gives rise to the boundary map H1(k,PGLn) → H2(k, k̄∗). The image of the
class of a CSA under this map is zero if and only if this CSA is a matrix algebra.
The classical construction of a CSA from a “system of factors” (a 2-cocycle)
gives the surjectivity of Br(k) → H2(k, k̄∗), so this map is an isomorphism of
groups.

For any field extension K/k we the restriction

resK/k : Br(k)→ Br(K)

defined by sending [A] to [A⊗kK]. If K/k is a finite separable extension, then
we also have the corestriction map

coresK/k : Br(K)→ Br(k)

1See the appendix for basic properties of quaternion algebras.
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defined as the composite map (assuming K ⊂ k̄)

H2(K, k̄∗) = H2(k, (k̄ ⊗k K)∗)→ H2(k, k̄∗).

The isomorphism here is obtained by Shapiro’s lemma from the fact that
(k̄⊗kK)∗ is the direct sum of k̄∗ numbered by different embeddings of K into k̄,
so this Gal(k̄/k)-module is induced from the Gal(k̄/K)-module k̄∗. The arrow
is defined by the norm from K to k. The composition coresK/kresK/k = [K : k]
is easily seen to be the multiplication by the degree [K : k] on Br(k). Any
CSA becomes isomorphic to a matrix algebra already over a finite extension
of k, so we see that every element of Br(k) has finite order. In other words,
Br(k) is a torsion group.

The group PGLn(k) is also the automorphism group of the projective space
Pn−1
k . Thus H1(k,PGLn) also classifies the twisted forms of Pn−1

k (up to
isomorphism), i.e. the algebraic varieties over k that are k̄/k-forms of Pn−1

k .
They are called Severi–Brauer varieties. The easiest case is when n = 1,
then we are simply talking about conics. The conic associated to Q(a, b) is
ax2 + by2 = z2. We denote it by C(a, b).

Exercise Let F be the field of functions on C(a, b). Then Q(a, b) ⊗k F ∼=
M2(F ), so that the image of (a, b) under the restriction map Br(k) → Br(F )
is zero. (Hint: show that Q(a, b)⊗k F has zero divisors.)

There are two ways to define the Brauer group of a scheme X. One way is
to define the analogue of CSAs – the Azumaya algebras – as vector bundles on
X with a fibre-wise structure of CSAs. Azumaya algebras A and B are called
equivalent if A ⊗X End(V ) is isomorphic to B ⊗X End(W ) for some vector
bundles V and W on X.

In these lectures we follow a different approach which is based on étale
cohomology. Define Br(X) = H2(X,Gm), the second étale cohomology group
of X with coefficients in the étale sheaf defined by the multiplicative group
scheme Gm = A1 \ {0}. The Brauer group of Azumaya algebras BrAz(X) is
a torsion group (when X has finitely many connected components, i.e. X
is quasi-compact, see [9, Prop. 4.2.7]). It naturally maps to Br(X). By a
theorem of Gabber (see de Jong’s paper) the map BrAz(X) → Br(X)tors is
an isomorphism, at least when X has an ample invertible sheaf. (This means
that X is quasi-compact and there exists an invertible sheaf L of OX-modules
with the following property: for each x ∈ X there is an s ∈ H0(X,L⊗n) for
some n ≥ 1 such that s(x) 6= 0 and the open subset s 6= 0 is affine.) When
X is regular and integral, we shall see that Br(X) is naturally a subgroup of
the Brauer group of the residue field at the generic point of X, hence Br(X) is
also a torsion subgroup. In particular, the two definitions of the Brauer
group of a scheme coincide for regular quasi-projective schemes over
the spectrum of a Noetherian ring, e.g. for regular quasi-projective
varieties over a field.

1.2. Residues and purity. References: [8], [9]
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Let X be a regular integral scheme with the generic point j : Spec(F ) ↪→ X.
If D ⊂ X is an irreducible divisor, we denote its field of rational functions by
k(D). There is an exact sequence of sheaves in étale topology [9, Example
III.2.22], which decribes the embedding of the group of invertible regular
functions into the group of non-zero rational functions as the kernel of the
divisor map:

0→ Gm,X → j∗Gm,F → ⊕D∈X1 iD∗Zk(D) → 0, (1.1)

where iD : Spec(k(D)) ↪→ X is the embedding of the generic point of an
irreducible divisor on X, and the direct sum ranges over all such divisors.
This sequence exists because X is regular, and hence Weil divisors are the same
thing as Cartier divisors (i.e. any divisor is locally given by one equation).

Let f : Y → X be a morphism and let F be a sheaf on Y . We shall often
use the spectral sequence of composed functors

Hp(X,Rqf∗F)⇒ Hp+q(Y,F),

see [9, Thm. III.1.8], and refer to it as the ‘usual’ spectral sequence.

It immediately implies that H1(X, iD∗Zk(D)) is a subgroup of H1(k(D),Z) =
0; this group is zero because the first cohomology group of a profinite group
with coefficients in Z is trivial. (Similarly one shows that R1iD∗Zk(D) = 0.
Indeed, let x̄ be a geometric point of X and let Osh

x̄ be the strict Henselisation
of the local ring of X at x̄. The stalk of R1iD∗Zk(D) at x̄ is H1 of the inverse
image of the sheaf Zk(D) on Spec(Osh

x̄ ) ×X Spec(k(D)), see [9, Thm. III.1.5].
If x̄ 6∈ D, this fibred product is empty, so the stalk is 0. If x̄ ∈ D this fibred
product is the spectrum of the field of fractions of the strictly Henselian local
ring of x̄ in D, so H1 is zero.) Therefore, the long exact sequence of cohomology
groups attached to (1.1) gives

0→ Br(X)→ H2(X, j∗Gm,F )→ ⊕D∈X1 H2(X, iD∗ZD). (1.2)

By Hilbert’s theorem 90 we have R1j∗Gm,F = 0. (Again, the stalk at x̄ is H1

of Gm on Spec(Osh
x̄ )×X Spec(F ), which is the spectrum of the field of fractions

F sh
x̄ of Osh

x̄ .) Then the usual spectral sequence implies that H2(X, j∗Gm,F ) is
a subgroup of H2(F,Gm,F ) = Br(F ). Thus Br(X) is naturally a subgroup
of Br(F ). This also shows that if U ⊂ X is a dense open subset, then the
canonical map Br(X) → Br(U) is injective. Since Br(F ) is a torsion group,
Br(X) is also a torsion group.

By Tsen’s theorem Br(F ) = 0 if X is a curve over an algebraically closed
field. Hence Br(X) = 0 when X is an integral regular curve over an
algebraically closed field.

If X is a scheme of dimension 1 such that the residue fields at its closed
points are perfect (for example, finite) and the residue field at the generic
point has characteristic zero, we have R2j∗Gm,F = 0. (Indeed, the stalk of
this sheaf at x̄ is H2(F sh

x̄ ,Gm) = Br(F sh
x̄ ). By a theorem of Lang the field

of fractions of a Henselian DVR with an algebraically closed residue field is a
C1-field – at least when it has characteristic zero – so its Brauer group is zero.)
Since R1ix∗Z = 0, where x is a closed point of X, the usual spectral sequence
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shows that H2(X, ix∗Z) is a subgroup of H2(k(x),Z) = H1(k(x),Q/Z). (The
last isomorphism follows from the exact sequence

0→ Z→ Q→ Q/Z→ 0

since H i(k,Q) = 0, i > 0, for any field k, as this group is a torsion
group where the multiplication by any integer is an isomorphism.) Hence
H2(X, j∗Gm,F ) = Br(F ) and (1.2) gives an exact sequence

0→ Br(X)→ Br(F )→ ⊕x H1(k(x),Q/Z), (1.3)

where x ranges over the closed points of X. The map Br(F )→ H1(k(x),Q/Z)
is called the residue at D. We see that Br(X) is the kernel of all residue maps
associated to the closed points of X.

For a ring R one write Br(R) = Br(Spec(R)).

Let R be a local ring with the maximal ideal m and the fraction field F . We
assume that the residue field k = R/m is perfect. By the functoriality of étale
cohomology the embedding of the closed point Spec(k) → Spec(R) gives rise
to the specialisation map Br(R)→ Br(k). Azumaya’s theorem says that when
R is Henselian (for example, complete), this map is an isomorphism. So for
X = Spec(R), where R is a Henselian DVR, (1.3) simplifies further. In this
case the residue map in (1.3) has a section given by the choice of a generator
π of m, so we obtain a split short exact sequence (Witt’s theorem)

0→ Br(k)→ Br(F )→ H1(k,Q/Z)→ 0. (1.4)

Here is how one can compute the residue and show that (1.4) is split.
Let us assume that the DVR R is complete. By Lang’s theorem the Brauer
group of the maximal unramified extension Fnr is zero. By Hilbert’s theorem
90 the usual spectral sequence Hp(Gal(Fnr/F ), Hq(Fnr, F̄

∗)) ⇒ Hp+q(F, F̄ ∗)
gives an isomorphism H2(Gal(Fnr/F ), F ∗nr)−̃→Br(F ). We have Gal(Fnr/F ) ∼=
Gal(k̄/k) = Γk. Combined with the map given by the valuation F ∗nr → Z this
defines a map

Br(F )−̃→H2(k, F ∗nr) −→ H2(k,Z) = H1(k,Q/Z) = Homcont(Γk,Q/Z),

which coincides with the residue as defined above. We also see that a choice
of a generator of m defines a section of the second arrow and hence of the
composed map.

If the characteristic of k is not 2, the residue map becomes

Br(F )[2] −→ H1(k,Q/Z)[2] = Hom(Γk,Z/2) = k∗/k∗2.

The above description of residue can be used to show that if m = (π) and
u ∈ R∗, then the residue of the class (π, u) is zero is the image of u in k∗/k∗2.
If v ∈ R∗, then the residue of (u, v) is zero. It is known that (a, b) ∈ Br(F )
is a multiplicative function in each of the two variables, so the computation
of residue in the general case can be reduced to these particular cases using
(a2, b) = (a,−a) = 0 for any a, b ∈ F ∗.

Now let k be a finite field. Since the Brauer group of a finite field is zero
and its absolute Galois group is Ẑ (with Frobenius as a topological generator),
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in the case when F = Kv is the completion of a global field K at a non-
Archimedean place v we obtain an isomorphism Br(Kv)−̃→Q/Z. Up to sign
this map coincides with the local invariant isomorphism invv provided by
class field theory. If Kv is the field of p-adic numbers Qp and u ∈ Z∗p, then

invp(p, u) = 1/2 if the Legendre symbol
(
u
p

)
= −1, and invp(p, u) = 0 is(

u
p

)
= 1.

The analogue of (1.3) is also valid when X is a smooth integral variety over
a field k of characteristic zero. Let Y ⊂ X be a closed subset which is smooth2

of codimension d at every point y ∈ Y . We have a long exact sequence of
cohomology with support:

. . .→ Hn
Y (X,Gm)→ Hn(X,Gm)→ Hn(X \ Y,Gm)→ Hn+1

Y (X,Gm)→ . . .

Using local purity for the smooth pair (X, Y ) (see [9, VI, §5]) one shows
that H2

Y (X,Gm) = H3
Y (X,Gm) = 0 if d ≥ 2, so in this case we obtain an

isomorphism

Br(X)−̃→Br(X \ Y ). (1.5)

If d = 1, we have H2
Y (X,Gm) = 0 and

H3
Y (X,Gm) = ⊕DH2(k(D),Z) = ⊕DH1(k(D),Q/Z),

where D ranges over the irreducible components of Y , so there is an exact
sequence

0→ Br(X)→ Br(X \ Y )→ ⊕DH1(k(D),Q/Z). (1.6)

For an arbitrary closed subset Y ⊂ X we define Y0 as the smooth locus of the
union of irreducible components of Y of codimension 1 in X. Then Y \ Y0 has
codimension at least 2. Define Y1 as the smooth locus of the union of irreducible
components of Y \Y0 of codimension 2, and so on. Then Y is the disjoint union
of locally closed smooth subsets Yn for n ≥ 0, where the codimension of Yn
in X is n + 1 (we allow Yn to be empty). The set Y0 is open in Y , so Y \ Y0

is closed in Y and hence in X. The open subset U = X \ (Y \ Y0) contains
Y0 as a smooth closed subset. By applying (1.5) we obtain an isomorphism
Br(X) = Br(U), and a similar isomorphism Br(X \ Y ) = Br(U \ Y0). Now
(1.6) gives

0→ Br(X)→ Br(X \ Y )→ ⊕DH1(k(D),Q/Z), (1.7)

where D ranges over the irreducible components of Y of codimension 1 in X.
Passing to the inductive limit over closed subsets Y ⊂ X we deduce the exact
sequence

0→ Br(X)→ Br(k(X))→ ⊕D H1(k(D),Q/Z), (1.8)

where D ranges over the irreducible divisors of X.

The embedding of the generic point iD : Spec(k(D))→ X factors as

Spec(k(D))→ Spec(ÔX,D)→ Spec(Oh
X,D)→ Spec(OX,D)→ X,

2There is a mistake in GBIII,§6, where the smoothness of Y is not mentioned.
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where ÔX,D is the completion of the local ring OX,D (the point is that the
Henselisation and the completion of a local ring don’t affect the residue field).
Each residue map Br(k(X)) → H1(k(D),Q/Z) can be computed at the level
of the local ring OX,D which is a DVR with the residue field k(D) and the field
of fractions k(X). Thus the residue map in (1.8) factors through the residue
map in the exact sequence (1.4) attached to the Henselisation Oh

X,D (or the

completion ÔX,D).

Finally we note that the Brauer group is a birationl invariant of smooth
projective varieties in characteristic zero.

1.3. Algebraic and transcendental parts of Br(X). References: [8]

Let X be a smooth geometrically integral variety over a field k with a
separable closure k̄. We assume that k̄[X]∗ = k̄∗, for example X projective.
We write X = X ×k k̄ and Γ = Gal(k̄/k). The group Br(X) is called the
geometric Brauer group of X. Define

Br0 = Im[Br(k)→ Br(X)], Br1(X) = Ker[Br(X)→ Br(X)].

The subgroup Br1(X) ⊂ Br(X) is called the algebraic Brauer group of X, and
the quotient Br(X)/Br1(X) is called the transcendental Brauer group of X.
A particular case of our usual spectral sequence for the structure morphism
X → Spec(k) is the spectral sequence Hp(k,Hq(X,Gm)) ⇒ Hp+q(X,Gm). It
gives rise to the exact sequence

0→ Pic(X)→ Pic(X)Γ → Br(k)→ Br1(X)→ H1(k,Pic(X))→ . . . , (1.9)

whose next terms are H3(k, k̄∗) → H3(X,Gm). The last map, as well as the
map Br(k) → Br1(X), has a retraction if X has a k-point, because a k-point
is naturally a section of the structure morphism X → Spec(k). We also see
that in this case Pic(X)→ Pic(X)Γ is an isomorphism.

Raising functions to the `n-th power, where ` is a prime not equal to the
characteristic of k, gives rise to the Kummer exact sequence

1→ µ`n → Gm → Gm → 1.

At the level of H2 it gives an exact sequence

0→ Pic(X)/`n → H2(X,µ`n)→ Br(X)[`n]→ 0.

(This in particular implies that Br(An
k̄
) = Br(Pn

k̄
) = 0, because the affine space

has trivial cohomology groups in positive dimension, whereas the cohomology
of the projective space is spanned by the classes of projective subspaces of
smaller dimension.) Since Pic0(X) is divisible by powers of `, this gives rise to

0→ NS(X)⊗ Z` → H2(X,Z`(1))→ T`Br(X)→ 0,

where NS(X) is the Néron–Severi group of X, and T`Br(X) = lim←−Br(X)[`n]

is the Tate module of the Brauer group of X. The Tate module is a free Z`-
module. We deduce an isomorphism of abelian groups T`Br(X) ∼= Zb2−ρ` , where
b2 = rkH2(X,Q`) is the second Betti number of X and ρ = rk NS(X) is the
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rank of the Néron–Severi group. Therefore, the divisible subgroup Br(X){`}div

is isomorphic to (Q`/Z`)b2−ρ.
If we repeat the argument at the level of H3, we see that the Kummer

sequence identifies Br(X){`}/Br(X){`}div with the kernel of a map from
H3(X,Z`) to the `-adic Tate module ofH3(X,Gm). Since the former is torsion-
free, we get an isomorphism

Br(X){`}/Br(X){`}div−̃→H3(X,Z`)tors.

(The same argument as the one showing that the torsion subgroup of NS(X){`}
coincides with the torsion subgroup of H2(X,Z`(1)).) All in all, we obtain a
short exact sequence of Galois modules (see [GBIII, §8])

0 −→ (Q`/Z`)b2−ρ −→ Br(X){`} −→ H3(X,Z`(1))tors −→ 0. (1.10)

If the ground field k has characteristic zero, for almost all ` the group
H3(X,Z`(1)) is torsion-free: this is a consequence of the comparison theorem
between étale cohomology and Betti cohomology, see [9, Thm. III.3.12]. Then
we obtain an exact sequence

0 −→ (Q/Z)b2−ρ −→ Br(X) −→
⊕
`

H3(X,Z`(1))tors −→ 0, (1.11)

where the direct sum is a finite abelian group. Hence (1.11) represents Br(X)
as an extension of a finite group by a divisible group. When k ⊂ C, this finite
group is isomorphic to the torsion subgroup of the Betti cohomology group
H2(X(C),Z).

1.4. Exercises. 1. Use Tsen’s theorem and (1.9) to find Br(An
k) and Br(Pnk).

2. Let k be a field of characteristic zero. Use Tsen’s theorem, Hilbert’s
theorem 90 and the exact sequence of Γ-modules

0→ k̄(t)∗/k̄∗ → Div(P1
k̄)→ Pic(P1

k̄)→ 0

to deduce Faddeev’s exact sequence

0→ Br(k)→ Br(k(t))→
⊕

p∈(P1
k)1

Hom(Γkp ,Q/Z)→ Hom(Γk,Q/Z)→ 0.

(1.12)
Here (P1

k)
1 means the set of codimension 1 points of P1

k, i.e. the closed points.
These are the point ∞ for which k∞ = k, and the zero sets of irreducible
monic polynomials p(t) ∈ k[t] for which kp = k[t]/(p(t)). The third arrow is
the direct sum of residue maps, and the fourth arrow is the sum of so called
transfer maps.

The sequence (1.12) treats all closed points equally. If we take out the point
at infinity, then we can rewrite (1.12) as

0→ Br(k)→ Br(k(t))→
⊕
p(t)

Hom(Γkp ,Q/Z)→ 0, (1.13)

where the sum is over all monic irreducible polynomials in k[t].
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For 2-torsion we have H1(kp,Q/Z)[2] = k∗p/k
∗2
p , so we obtain

0→ Br(k)[2]→ Br(k(t))[2]→ ⊕p k∗p/k∗2p → 0. (1.14)

Remark One can construct a section of the third arrow in (1.14) as follows.
Let θ ∈ kp be a root of p(t) = 0, so that p(t) = Nk(D)/k((t − θ)). Take any
a ∈ k∗p and consider the quaternion algebra A = Q(a, t− θ) over kp(t). Prove
that its only non-trivial residue in the affine line is at t = θ; it is the class of a
in k∗p/k

∗2
p . From the definitions of the corestriction and residue maps one can

deduce that the residue of coreskp/k[A] ∈ Br(k(t))[2] is non-zero only at the
closed point p(t) = 0, where it is the class of a in k∗p/k

∗2
p .

3. Prove that the Brauer group of a smooth geometrically integral curve C
with a k-point is isomorphic to Br(k) ⊕H1(k, J), where J is the Jacobian of
C and the splitting is given by the choice of a k-point.

4. Convince yourself that if X is a K3 surface or an abelian variety, then
Br(X) ∼= (Q/Z)b2−ρ (in this case the Z`-cohomology is torsion-free).

5. Compute the Brauer group of a conic C(a, b) by making the terms and
maps in (1.9) explicit. (Hint: use the exercise from Subsection 1.1.) Use this
exact sequence to prove that a conic with a k-point is isomorphic to P1

k.

6. Compute the Brauer group of a smooth projective quadric of dimension
d ≥ 3. (Hint: The geometric Picard group is generated by the hyperplane
section.)

7† Compute the Brauer group of a smooth projective quadric of dimension
2. (Hint: Consider separately the cases when the discriminant is a square or
not. In the second case argue as in the previous exercise.)

8†† Compute the Brauer group of a genus 1 curve without a k-point assuming
that H3(k, k̄∗) = 0. (Hint: You can assume that the curve is an n-covering of
its Jacobian for some n.)

2. Brauer–Manin obstruction and the arithmetic of conic
bundles

2.1. Smooth proper models of conic bundles. References: [14]

Consider a conic over the field k(t), where char(k) is not 2. We can
diagonalise a quadratic form that defines it,

a0(t)x2
0 + a1(t)x2

1 + a2(t)x2
2 = 0, a0, a1, a2 ∈ k(t), (2.1)

and multiply the coefficients by a common multiple so that a0(t), a1(t), a2(t) ∈
k[t] and a0(t)a1(t)a2(t) is a separable polynomial. Let us treat (x0 : x1 : x2)
as homogeneous coordinates in the projective plane and define the surface
X ′ ⊂ A1 × P2 by the above equation. A straightforward calculation with
partial derivatives in local coordinate shows that X ′ is smooth (this can be
done over k̄).

We would like to build a projective surface, with a morphism to P1
k. Without

loss of generality we can assume that the degrees di = deg(ai) have the same
parity. Indeed, replacing t by t − c for some c ∈ k we can assume that



RATIONAL POINTS ON HIGHER-DIMENSIONAL VARIETIES 11

a0(0)a1(0)a2(0) 6= 0. Now let t = 1/v. This gives an equation similar to
(2.1) with coefficients that are polynomials in v whose degrees have the same
parity. We now assume this and revert to denoting the parameter by t.

Let T be another variable. The coefficients of the equation

T d0a0(1/T )X2
0 + T d1a1(1/T )X2

1 + T d2a2(1/T )X2
2 = 0 (2.2)

are polynomials in T (reciprocal polynomials to the original coefficients). Let
X ′′ ⊂ A1 × P2 be the closed subset it defines, where T is a coordinate in A1,
and (X0 : X1 : X2) are homogeneous coordinates in the plane. Note that X ′′ is
smooth since the product of three coefficients is a separable polynomial in T .
We think of these two affine lines as affine pieces of P1, so that the coordinates
are related by T = 1/t. Let ni be the integer such that 2ni = di or 2ni = di+1,
where i = 0, 1, 2. The substitution xi = T niXi tranforms (2.1) in (2.2). Hence
the restrictions of X ′ and X ′′ to the intersection of two affine pieces of P1 are
isomorphic and we can glue X ′ and X ′′ to define a smooth surface X. It comes
equipped with the morphism π : X → P1 that extends the first projections
X ′ → A1 and X ′′ → A1. The fibres of π are projective conics. Note that the
fibre at t =∞ (T = 0) is a smooth conic.

This is sometimes called a standard model, in these notes a conic bundle is
always assumed to be a standard model. (A standard model is not unique.)
So by definition any conic bundle is smooth and proper.

Structure of bad fibres. 1. The degenerate fibres are the fibres over the
roots of a0(t)a1(t)a2(t). (If we allow the case when the parities of the degrees
of coefficients are not the same, the fibre t =∞ is also singular).

2. Each degenerate fibre is geometrically a pair of transversal lines meeting
at one point.

3. If p(t) is a monic irreducible factor of a0(t), then the components of
the fibre of π at the closed point p(t) = 0 are defined over the extension
of kp = k[t]/(p(t)) given by the square root of the image of −a1(t)a2(t) in
k[t]/(p(t)). Similarly for the prime factors of a1 and a2, and, in the unequal
parity case, for the fibre at infinity. We denote this image by αp.

Definition 2.1. The discriminant of π : X → P1
k is the product of monic

irreducible polynomials p(t) dividing a0(t)a1(t)a2(t) such that αp is not a square
in kp (equivalently, the fibre Xp is an irreducible and singular). The degree of
the discriminant is called rhe rank of π : X → P1

k.

Note that the generic fibre of π is the conic a0(t)x2
0 + a1(t)x2

1 + a2(t)x2
2 = 0

over the field k(t). This is the conic attached to the quaternion algebra

Q = Q(−a0a1,−a0a2) = Q(−a0a1,−a1a2).

Lemma 2.2. The class of αp in k∗p/k
∗2
p equals the residue Resp(Q). We have∏

pNkp/k(αp) ∈ k∗2.

Proof The first statement follows from the explicit description of the residue
of quaternion algebras. For the second statement note that by Exercise 2
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the element [Q] −
∑

pAp ∈ Br(k(t)), where Ap = coreskp/k(αp, t − θp), has

trivial residues at all the closed points of A1
k. By the exact sequence (1.14)

[Q] −
∑

p Ap ∈ Br(k), and so this element has trivial residue at ∞. Let us

assume without loss of generality, as we always do, that the fibre of π : X → P1
k

at ∞ is smooth. Then the residue of Q at ∞ is trivial, so that the sum of
residues of Ap for all p is trivial too. A calculation shows that the residue of
Ap at ∞ is Nkp/k(αp), hence the second statement. �

2.2. The Brauer group of a conic bundle.

Theorem 2.3. Let π : X → P1
k be a conic bundle, where k is a field of

characteristic different from 2. Let Q be the quaternion algebra defined by
the generic fibre of π. Then Br(X) is isomorphic to the subgroup of Br(k(t))
consisting of the elements whose residue at each closed point M ∈ P1

k is 0 or
ResM(Q), modulo the subgroup generated by [Q] ∈ Br(k(t)).

Proof Since the Picard group of a conic is isomorphic to Z as a Galois module,
the Brauer group of the generic fibre is the surjective image of Br(k(t)). In
fact, by the solution to Exercise 4 it is the quotient of Br(k(t)) by the subgroup
generated by [Q]. So we need to determine which elements A ∈ Br(k(t)) come
from Br(X) when pulled back to Br(k(X)). By the exact sequence (1.8) this
is equivalent to the triviality of the residues of A at each divisor of X. Since
ResM(A) 6= 0 for only finitely many closed points M ∈ P1

k, we have A ∈ Br(U)
where U is a dense open subset of P1

k. Thus π∗A ∈ Br(π−1(U)), so only vertical
divisors D ⊂ X can give rise to non-zero residues of π∗A. They are of two
kinds: smooth and singular fibres of π.

Suppose M ∈ P1
k is such that the fibre XM is a smooth conic. Then we have

an extension of local rings OP1
k,M
⊂ OX,XM

such that the maximal ideal of
OP1

k,M
generates the maximal ideal ofOX,XM

, in other words, the valuations are
compatible. In this situation the explicit description of the residue in the case
of a complete local ring shows that Resk(XM )(π

∗A) is the image of ResM(A)
under the natural map k∗M/k

∗2
M → k(XM)∗/k(XM)∗2. But if a constant from

kM is a square in the function field k(XM) of the smooth conic XM , then it
is already a square in kM . It follows that we must have ResM(A) = 0. Note
that in this case ResM(Q) = 0 ∈ k∗M/k∗2M .

If XM is singular and ResM(Q) = 0, then XM is a singular conic which is a
union of two projective lines meeting at a point. The above argument can be
applied to any of these components, with the same conclusion.

Finally, if XM is singular but αM = ResM(Q) 6= 0, then XM consists of
two conjugate projective lines individually defined over kM(

√
αM). The same

arguments as above show that Resk(XM )(π
∗A) is the image of ResM(A) under

the natural map k∗M/k
∗2
M → k(XM)∗/k(XM)∗2. Now k(XM) = kM(

√
αM)(x),

where x is an independent variable. It follows that Resk(XM )(π
∗A) = 0 if and

only if ResM(A) = 0 or ResM(A) = αM . QED

Corollary 2.4. In the notation of the theorem Br(X) modulo the image of
Br(k) is a finite abelian group of exponent 2. It is the quotient of the subspace
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of the F2-vector space with the basis given by the closed points M ∈ P1
k with

ResM(Q) 6= 0, defined by the condition∏
M

NkM/k(ResM(Q))nM = 1 ∈ k∗/k∗2,

modulo the 1-dimensional subgroup generated by the vector (1, . . . , 1).

2.3. Brauer–Manin obstruction. References: [13]

From now on k will be a number field. Artin–Hasse–Brauer–Noether
theorem says that a CSA over k is trivial if and only if it is trivial over each
completion kv of k. Thus Br(k) injects into the direct sum of Br(kv) for all
completions of k. The cokernel of this injective map is identified by the sum
of local invariants with Q/Z, so there is an exact sequence

0→ Br(k)→
⊕
v

Br(kv)→ Q/Z→ 0,

where the third arrow is
∑

invv (including the local invariants at the real
places). If X is a projective variety we write X(Ak) =

∏
vX(kv). The Brauer–

Manin pairing is
X(Ak)× Br(X)/Br(k)→ Q/Z,

defined by sending the adelic point (Mv) and A ∈ Br(X) to
∑

v invv(A(Mv)).
Its left kernel is called the Brauer–Manin set and is denoted by X(Ak)

Br. We
have X(k) ⊂ X(Ak)

Br.

Note that the map X(kv) → Q/Z that sends a point P to invv(P ) is
continuous for the topology of kv and takes its values in 1

n
Z/Z, and so is locally

constant. We obtain that the topological closure of X(k) is also contained in
the Brauer–Manin set.

The best we can possibly hope for is when X(k) is dense in X(Ak)
Br. Such

results have been obtained for conic bundles. When the rank is small, best
possible results have been proved already in the 80’s and early 90’s.

Theorem 2.5 (Colliot-Thélène, Sansuc, Swinnerton-Dyer, Salberger, S.). Let
k be a number field, and let π : X → P1

k be a conic bundle of rank at most 5.
Then the closure of X(k) in the space of adèles of X is the Brauer–Manin set
of X.

This is also true for some specific conic bundles of degree 6 (Swinnnerton-
Dyer), but the general case of rank 6 and higher is open. For the proofs see
[13, Ch. 7]. Colliot-Thélène and Sansuc conjectured that X(k) is dense in
X(Ak)

Br for any smooth, projective, geometrically rational surface X over a
number field k.

Example (Iskovskikh, Sansuc) Here is an explicit example of the Brauer–
Manin obstruction. Consider the conic bundle π : Xc → P1

Q

x2 + 3y2 = (c− t2)(t2 − c+ 1)z2 (2.3)

where c ∈ Z, c 6= 0, c 6= 1. One sees immediately that Xc(R) 6= ∅ if and only if
c > 1. The local solubility of (2.3) in Qp for any prime p imposes no restriction
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on c. This is easily seen for p 6= 3 by setting t = p−1 and using the fact that a
unit is a norm for an unramified extension. For p = 3 the solubility of (2.3) is
established by a case by case computation.

Consider the classes (−3, c− t2) and (−3, t2 − c+ 1) in Br(Q(t))[2]. Then

A = π∗(−3, c− t2) = π∗(−3, t2 − c+ 1) ∈ Br(Q(Xc)),

because (c− t2)(t2− c+ 1) is a rational function on Xc which is a norm for the
quadratic extension of Q(Xc) given adjoining the square root of −3 (see the
appendix for details). By Theorem 2.3 this algebra defines a class in Br(Xc)
and by Corollary 2.4 this class generates Br(Xc) modulo the image of Br(Q).
Thus to compute the Brauer–Manin obstruction we only need to compute the
sum

∑
v invv(A(Pv)), where Pv ∈ Xc(Qv).

Statement 1: If v 6= 3, then invv(A(Pv)) = 0 for any point Pv ∈ Xc(Qv).
This value is locally constant in the v-adic topology, hence we may assume
that Pv is not contained in the fibre at infinity or in any of the singular fibres,
that is, (c− t2)(t2− c+ 1) 6= 0. We must prove that c− t2 is locally a norm for
the extension Q(

√
−3)/Q. For Qv = R this easily follows since c− t2 > 0. For

a finite v 6= 3 we only have to consider the case when p is inert for Q(
√
−3)/Q.

We have two possibilities: v(t) < 0 and v(t) ≥ 0. In the first case v(c− t2) is
even, hence this is the product of a unit, which is a norm for the unramified
extension Qv(

√
−3), and an even power of a uniformizer, which is trivially a

norm for any quadratic extension. Since (c − t2) + (t2 − c + 1) = 1, in the
second case either v(c − t2) = 0, then c − t2 is a norm, or v(t2 − c + 1) = 0.
Then from the equation of Xc it follows that c− t2 is a norm multiplied by a
unit, hence is a norm.

Statement 2: For v = 3 and c = 32n+1(3m+ 2) we have inv3(A(P3)) = 1
2

for
any point P3 ∈ Xc(Q3), whereas for other values of c the local invariant takes
both values 0 and 1

2
. This purely local computation is omitted here.

Conclusion. When the sum of local invariants is never 0, the Manin
obstruction tells us that no Q-point can exist on Xc. This happens for
c = 32n+1(3m + 2), whereas Xc has adelic points for any c > 1. Theorem
2.5 implies that in all the other cases for c ∈ Z, c > 1, the surface Xc contains
a Q-point.

2.4. Digression: the Green–Tao–Ziegler theorem. In a series of papers
Green–Tao [5, 6] and Green–Tao–Ziegler [7] proved the generalized Hardy–
Littlewood conjecture in the finite complexity case. The following qualitative
statement is [5, Cor. 1.9].

Theorem 2.6 (Green, Tao, Ziegler). Let L1(x, y), . . . , Lr(x, y) ∈ Z[x, y] be
pairwise non-proportional linear forms, and let c1, . . . , cr ∈ Z. Assume that for
each prime p, there exists (m,n) ∈ Z2 such that p does not divide Li(m,n)+ ci
for any i = 1, . . . , r. Let K ⊂ R2 be an open convex cone containing a point
(m,n) ∈ Z2 such that Li(m,n) > 0 for i = 1, . . . , r. Then there exist infinitely
many pairs (m,n) ∈ K ∩ Z2 such that Li(m,n) + ci are all prime.
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A famous particular case is the system of linear forms x, x+y, . . . , x+(r−1)y.
In this case the result is the existence of arithmetic progressions in primes of
arbitrary length r.

We shall use the following easy corollary of Theorem 2.6. For a finite set of
rational primes S we write ZS = Z[S−1]. This is the set of rational numbers
whose denominators are divisibel only by the primes from S.

Proposition 2.7. Suppose that we are given (λp, µp) ∈ Q2
p for p in a finite set

of primes S, and a positive real constant C. Let e1, . . . , er be pairwise different
elements of ZS. Then there exist infinitely many pairs (λ, µ) ∈ Z2

S and pairwise
different primes p1, . . . , pr not in S such that

(1) λ > Cµ > 0;
(2) (λ, µ) is close to (λp, µp) in the p-adic topology for p ∈ S;
(3) λ− eiµ = piui, where ui ∈ Z∗S, for i = 1, . . . , r.

This follows from Theorem 2.6 via the Chinese remainder theorem. The
proof is boring and so we omit it here; it can be found in [3].

Proposition 2.8. Let e1, . . . , er be pairwise different rational numbers. Let S
be a finite set of primes containing 2 and the prime factors of the denominators
of e1, . . . , er. Suppose that we are given τp ∈ Qp for p ∈ S and a positive real
constant C. Then there exist pairwise different primes p1, . . . , pr not in S and
τ ∈ Q such that

(1) τ is arbitrarily close to τp in the p-adic topology, for p ∈ S;
(2) τ > C;
(3) valp(τ − ei) ≤ 0 for any p /∈ S ∪ {pi}, i = 1, . . . , r;
(4) valpi(τ − ei) = 1 for any i = 1, . . . , r;
(5) for any integer α divisible only by the primes from S and such that∑

p∈S

invp(α, τp − ei) = 0 ∈ Q/Z

for some i, the prime pi splits in Q(
√
α)/Q.

Proof. By increasing the list of ei’s, we may assume r ≥ 2. We then apply
Proposition 2.7 to (λp, µp) = (τp, 1) for p ∈ S. This produces (λ, µ) ∈ Z2

S such
that τ = λ/µ satisfies all the properties in the proposition. Indeed, (1) and (2)
are clear. For p /∈ S we have valp(µ) ≥ 0. For p 6= pi we have valp(λ−eiµ) = 0,
so that

valp(τ − ei) = valp(λ− eiµ)− valp(µ) ≤ 0,

which proves (3). From the assumption r ≥ 2 we can deduce that valpi(µ) = 0
for i = 1, . . . , r. Otherwise valpi(µ) > 0, which would imply valpi(λ) > 0; we
would obtain valpi(λ − ejµ) > 0 and therefore pi = pj for some j 6= i, thus
contradicting the hypothesis that the primes p1, . . . , pr are pairwise different.
This proves (4). Since (λ, µ) is close to (τp, 1) in the p-adic topology for p ∈ S,
by continuity we have ∑

p∈S

invp(α, λ− eiµ) = 0.



16 ALEXEI SKOROBOGATOV

We also have λ − eiµ > 0, hence invR(α, λ − eiµ) = 0. By global reciprocity
law (essentially, Gauss reciprocity) this implies∑

p/∈S

invp(α, λ− eiµ) = 0.

Since α is odd and comprime to the primes in S, we have invp(α, λ− eiµ) = 0
for any prime p /∈ S ∪ {pi}, because in this case valp(λ− eiµ) = 0. Thus

invpi(α, λ− eiµ) = 0.

But valpi(λ− eiµ) = 1 hence pi must split in Q(
√
α), so that (5) is proved. �

2.5. Conic bundles over Q with degenerate Q-fibres. In the rest of this
lecture we assume that ResM(Q) 6= 0 only for k-points M , i.e. for closed
points with the residue field k. Let e1, . . . , en ∈ k be the coordinates of these
points. As usual, we assume that the fibre at ∞ is smooth. By a slight
abuse of notation we represent Resei(Q) by αi ∈ k∗ defined up to a square.
Define Ai = (αi, t − ei) ∈ Br(k(t)). It is clear that Ai is ramified at ei and
∞, but nowhere else. From Theorem 2.3 we see that Br(X) modulo Br(k) is
the quotient by Z/2[Q] of the subgroup of Z/2A1 ⊕ . . .⊕ Z/2An given by the
condition

n∏
i=1

αni
i = 1 ∈ k∗/k∗2. (2.4)

Here is the main theorem of this lecture. By a Q-fibre of π : X → P1 we
understand a closed fibre above a Q-point of P1.

Theorem 2.9 (Browning, Matthiesen, AS, based on Green, Tao, Ziegler). Let
X be a conic bundle over Q such that all fibres that are irreducible singular
conics are Q-fibres. Then the closure of X(k) in the space of adèles of X is
the Brauer–Manin set of X.

Note that the rank in this statement can be arbitrary. This result is
interesting because it implies the existence of many (in fact, a Zariski dense
set of) solutions in Q besides the obvious ones (singular points of the sigular
fibres). We give a proof following [3].

Proof. Let Xi be the fibre above the point ei ∈ A1(Q), for i = 1, . . . , r. We
have seen that every element of Br(X) is of the form

∑
niπ

∗Ai +A0 for some
ni satisfying (2.4) and A0 ∈ Br(Q).

Assume that X(AQ)Br 6= ∅, otherwise there is nothing to prove. Pick any
(Mp) ∈ X(AQ)Br, where M0 is a point in X(R). By a small continuous
deformation we can assume that Mp does not belong to any of the fibres
X1, ..., Xr. Here we use the fact X(Qp) is a smooth p-adic manifold, so each
point has an open neighbourhood homeomorphic to a disc.

We include the real place in the finite set of places S where we need to
approximate. The set of real points M0 in a small neighbourhood of M0 for
which π(M0) ∈ P1(Q) is dense in this neighbourhood, and so it is enough to
approximate adelic points (Mp) such that π(M0) ∈ P1(Q). By a change of
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variables we then assume that π(M0) = ∞. By another small deformation of
Mp for each prime p we can further assume that π(Mp) 6=∞ when p 6= 0.

We include in S the primes of bad reduction for X. We ensure that ei ∈ ZS
for each i = 1, . . . , r, ei − ej ∈ Z∗S for all i 6= j, and no prime outside of S is
ramified in any of the fields Q(

√
αi).

We claim that if A =
∑r

i=1 niAi has trivial residue at ∞, which happens if
and only if π∗A ∈ Br(X), then invp

(
A(π(Np))

)
= 0 for any p /∈ S and any

Np ∈ X(Qp). Indeed, each αi ∈ Z∗p so this is clear if π(Np) reduces modulo p
to any point other than e1, . . . , er, because A can have non-zero residues only
at these points. If π(Np) reduces modulo p to some ei, then Np reduces to
a smooth Fp-point of the singular fibre Xi. But any smooth Fp-point of Xi

belongs to one of the two geometric irreducible components of Xi, hence these
components are actually defined over Fp, so Q(

√
αi) is split at p. Now the

reduction of αi modulo p is a square, and this means invp
(
A(π(Np))

)
= 0.

Lemma 2.10 (Harari’s ‘formal lemma’). There exist a prime ` /∈ S and a
point M` ∈ X(Q`) such that for each i = 1, . . . , r we have∑

p∈S∪{`}

invp
(
Ai(π(Mp))

)
= 0. (2.5)

Proof of lemma. By the last paragraph before the lemma the fact that
(Mp) ∈ X(AQ)Br implies

∑
p∈S

invp
( r∑
i=1

niAi(π(Mp))
)

= 0

whenever we have π∗(
∑r

i=1 niAi) ∈ Br(X), which is equivalent to the condition∏r
i=1 α

ni
i ∈ k∗2.

If
∑

p∈S invp
(
Ai(π(Mp))

)
= 0 for all i, we are done.

If (2.5) does not hold, then for some B =
∑r

i=1miAi we have∑
p∈S

invp
(
B(π(Mp))

)
= 1/2.

Let K be the extension of Q obtained by adjoining the square roots of all∏r
i=1 α

si
i for which

∑
p∈S invp

(∑r
i=1 siAi(π(Mp))

)
= 0. It is clear that Q(

√
b)

is not contained in K. Using Dirichlet’s theorem on primes in an arithmetic
progression we can find a prime ` outside of S such that each ` is totally split
in K and inert in Q(

√
b).

The surface X has good reduction outside of S, so for any p /∈ S the fibre at
infinity X∞ is a smooth conic. Any smooth conic over Fp contains Fp-points.
By Hensel’s lemma any such point lifts to a Qp-point of X. We choose such a
point M` for the prime `. The point π(M`) ∈ P1

Q`
reduces to ∞ modulo `, so

we have inv`
(
B(π(M`))

)
= 1/2 as the Legendre symbol

(
b
`

)
= −1.



18 ALEXEI SKOROBOGATOV

By our choice of ` we see that
∑

p∈S invp
(∑r

i=1 siAi(π(Mp))
)

= 0 implies∑
p∈S∪{`}

invp
( r∑
i=1

siAi(π(Mp))
)

= 0

(the residue of such a sum reduces to a square modulo ` because K is totally
split at `). We also have ∑

p∈S∪{`}

invp
(
B(π(Mp))

)
= 0.

Thus (2.5) holds for all linear combinations of A1, . . . , An. �

End of proof of the theorem Let τp be the coordinate of π(Mp), where p is
a prime in S1. An application of Proposition 2.8 produces τ ∈ Q which is an
arbitrarily large real number, and is close to τp in the p-adic topology for the
primes p ∈ S1.

Let us prove that Xτ (AQ) 6= ∅. By the inverse function theorem we have
Xτ (R) 6= ∅ and Xτ (Qp) 6= ∅ for p ∈ S1. Thus it remains to consider the
following two cases.

Qv = Qp, where p = pi, i = 1, . . . , r. Since valpi(τ − ei) = 1, the reduction
of τ modulo pi equals the reduction of ei. For each given value of i the field
Q(
√
αi) are split at pi. Hence the reduction of Xτ is the union of two projective

lines over Fpi meeting in one point. Hence it contains smooth Fpi-points. By
Hensel’s lemma any such point gives rise to a Qpi-point in Xτ .

Qv = Qp, where p /∈ S1 ∪ {p1, . . . , pr}. We have valp(τ − ei) ≤ 0 for each
i = 1, . . . , r, and hence the reduction of τ modulo p is a point of P1(Fp) other
than the reduction of any of e1, . . . , er. Hence the reduction of Xτ is a smooth
conic over Fp, so it has smooth Fp-points. By Hensel’s lemma any such point
gives rise to a Qp-point in Xτ .

By Legendre’s theorem Xτ (Q) 6= ∅, so we have found a Q-point in X.

To prove weak approximation recall that we can make τ very close to τp for
p ∈ S. Since Xτ ' P1

k we can approximate in this fibre, and so find Q-points
on X as close as we like to Mp for p ∈ S. �

Very recently Harpaz and Wittenberg, using a result of Matthiesen, gen-
eralised Theorem 2.9 by allowing the fibres of π : X → P1

Q to be arbitrary
geometrically rational varieties for which Q-rational points are dense in the
Brauer–Manin set.

Colliot-Thélène conjectured that for any number field if X is a smooth
projective rationally connected variety (for example, a geometrically rational
or unirational variety), then X(k) is dense in the Brauer–Manin set of X.
This is a very strong and almost completely open conjecture that has some
amazingly strong consequences like the inverse Galois problem.

2.6. Exercises. 1. Use Tsen’s theorem to prove that any conic bundle
π : X → P1

k̄
over an algebraically closed field k̄ has a section, that is, there is a

morphism σ : P1
k̄
→ X ×k k̄ such that the composition πσ is the identity map.
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Show that k̄(X) is a purely transcendental extension of k̄, in other words X is
geometrically rational.

2. Deduce Corollary 2.4 from Theorem 2.3 (compare with Exercise 2 from
Lecture 1).

3. Let X → P1
k be a standard model of the conic bundle with the affine

equation
x2 − ay2 = (t− e1) . . . (t− en)z2,

where n is even, a /∈ k∗2, ei ∈ k, ei 6= ej. Prove that the cokernel of the natural
map Br(k) → Br(X) is isomorphic to (Z/2)n−2. Decide what happens for n
odd.

4. Let X be a variety over a number field k such that X(Ak)
Br 6= ∅.

(a) Prove that the natural map Br(k)→ Br(X) is injective.

(b) Deduce from (a) the Hasse–Minkowski theorem that a conic over a
number field satisfies the Hasse principle.

5†† Use Proposition 2.7 to deduce the following result of Lilian Matthiesen.
Let ai ∈ Q∗, ci ∈ Q∗ and ei ∈ Q, for i = 1, . . . , r, be such that ei 6= ej for
i 6= j. Then the variety W ⊂ A2r+2

Q defined by

ci(u− eiv) = x2
i − aiy2

i 6= 0, i = 1, . . . , r, (2.6)

satisfies the Hasse principle and weak approximation. (Hint: A proof can be
found in [3].)

3. Beyond rational varieties

3.1. K3 surfaces. A K3 surface X over a field k is a geometrically simply
connected surface with trivial canonical class. Examples of K3 surfaces are
smooth quartic surfaces in P3

k, double covers of P2
k ramified in a smooth sextic

curve, complete intersections of three quadrics in P5
k. A Kummer surface is

another example of a K3 surface. This is the minimal desingularisation of the
quotient of an abelian surface (e.g. the product of two elliptic curves) by the
antipodal involution P 7→ −P . More generally, we shall call Kummer surfaces
the desingularisations of quotients of 2-coverings of abelian surfaces by the
antipodal involution. Such Kummer surfaces feature in Theorem 3.3 below;
they may have no rational points.

Theorem 3.1 (Zarhin, S.). Let k be a field of characteristic not equal to 2
finitely generated over its prime subfield. The cokernel of the natural map
Br(k) → Br(X) is finite if char(k) = 0, and finite modulo p-primary torsion
if char(k) = p.

The proof uses the Kuga–Satake abelian variety of X as interpreted by
Deligne and the various versions of the Tate conjecture proved by Faltings,
Zarhin, Madapusi Pera (using Kisin’s work on integral models of Shimura
varieties).

Corollary 3.2. For a K3 surface X over a number field k the Brauer–Manin
set X(Ak)

Br is an open and closed subset of X(Ak) =
∏
X(kv).
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It is quite easy to show that the cokernel of Br(k) → Br(X) is finite for
geometrically rational varieties, so in analogy with the conjecture of Colliot-
Thélène and Sansuc one is tempted to state the following conjecture.

Conjecture 1. X(k) is a dense subset of X(Ak)
Br.

In particular, if Br(X) = Br(k), then X(k) should be dense in X(Ak) (and so
satisfy the Hasse principle and weak approximation). Some numerical evidence
for the Hasse principle part of this conjecture has been obtained by Bright.
Computations in the direction of weak approximation on Kummer surfaces
have been done by Elsenhans and Jahnel.

Conjecture 1 implies the following Conjecture 2.

Conjecture 2. If X(k) is non-empty, then X(k) is Zariski dense, in particular,
infinite.

Can something be proved for K3 surfaces with a pencil of curves of genus 1,
essentially by doing descent on these curves in a family? For surfaces fibred into
genus 1 curves over P1

k there is some theoretical evidence for the Hasse principle
with the Brauer–Manin obstruction (Colliot-Thélène, S., Swinnerton-Dyer).
One difficulty here is that the analogue of the Minkowski–Hasse theorem fails
for curves of genus 1: torsors of a given elliptic curve E do not in general satisfy
the Hasse principle. The obstruction lies in the Shafarevich–Tate group X(E)
formed by the classes of everywhere locally soluble torsors of E. However, if
X(E) is finite, then the Cassels–Tate pairing on this group is non-degenerate,
so the class of a torsor is zero precisely when it is contained in the kernel of the
Cassels–Tate pairing. In his seminal talk at the ICM in Nice Manin interpreted
this pairing in terms of the pairing between (a part of) the Brauer group and
adelic points on the curve of genus 1. Establishing the finiteness of X(E) (in
the cases when it is known) is beyond these lectures. As this is a necessary
first step we shall simply assume this finiteness in the following result, which
is a particular case of a more general statement.

Theorem 3.3 (Harpaz, S.). Let g1(x) and g2(x) be irreducible polynomials of
degree 4 over k, each with the Galois group S4, such that there exist odd places
w1 6= w2 with gi(x) ∈ Owj

[x] and valwj
(discr(gi)) = δij for i, j ∈ {1, 2}.

Assume |X{2}| < ∞ for the Jacobian of the curve y2 = cgi(x) for any
c ∈ k∗, i = 1, 2, when its 2-Selmer rank is 1.

If the K3 surface X given by the affine equation z2 = g1(x)g2(y) is
everywhere locally soluble, then X(k) is Zariski dense in X.

If Ci is the genus 1 curve y2 = gi(x), then its Jacobian Ei is the elliptic curve
u2 = fi(t), where fi is the cubic resolvent of gi. There is a morphism Ci → Ei,
which makes Ci into a 2-covering of Ei. The surface X can be obtained as
the minimal desingularisation of the quotient of C1 × C2 by the involution
that changes the sign of y simultaneously for both curves. So X is a Kummer
surface in the sence alluded to above.

Much less is known about weak approximation on K3 surfaces.
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Theorem 3.4 (Swinnerton-Dyer, Pannekoek). Let Vc ⊂ P3
Q be the quartic

surface given by the equation

x4
0 + cx4

1 = x4
2 + cx4

3,

where c = 2, 4, 6, 10, 12, 14, 18, 20, 22 (and some other rational numbers, e.g.
c = 2/3) the set Vc(Q) is dense in Vc(Q2).

The proof is based on the observation that Vc has two pencils of genus 1
curves and exploits the group structure on the fibres of both pencils which
contain rational points. These pencils are the inverse images of two families of
lines on the quadric (isomorphic to P1

k × P1
k)

y2
0 + cy2

1 = y2
2 + cy2

3

under the morphism that squares each of the coordinates.

The best known result allows one to approximate local points by global
points simultaneously at three different completions.

Theorem 3.5 (Pannekoek). Let p and q be distinct primes not equal to 3.
There exist (in fact, infinitely many non-isomorphic) Kummer K3 surfaces
X = Kum(E × E), where E is an elliptic curve over Q, such that X(Q) is
dense in X(R)×X(Qp)×X(Qq).

3.2. Enriques surfaces and the étale Brauer–Manin obstruction. A
smooth projective surface Y is called an Enriques surface if there exists an
unramified double cover f : X → Y , where X is a K3 surface.

Here is a carefully constructed example. Let X ⊂ P5
Q be the complete

intersection of the following quadrics:

x0x1 + 5x2
2 = y2

0

(x0 + x1)(x0 + 2x1) = y2
0 − 5y2

1

12x2
0 + 111x2

1 + 13x2
2 = y2

2.

One checks that X is smooth, so it is a K3 surface. It is easy to see that the
involution ι that changes the signs of x0, x1, x2 and does not alter y0, y1, y2 has
no fixed points. This implies that Y = X/ι is an Enriques surface.

Theorem 3.6 (Balestrieri, Berg, Manes, Park, Viray). We have Y (AQ)Br 6= ∅
but Y (Q) = ∅.

To prove that Y (Q) = ∅ one has to use an obstruction which is finer than
the Brauer–Manin obstruction. In this case it is the obstruction given by the
Brauer–Manin conditions on all K3 covers of Y to which adelic points can be
lifted. These covers are obtained as quadratic twists of each other, so let us
write them as fa : Xa → Y , where a ∈ Q∗. If a/b ∈ Q∗2, then Xa ' Xb. Let
us define the étale Brauer–Manin set as follows:

Y (AQ)ét,Br =
⋃
a∈Q∗

fa(Xa(AQ)Br).

The point is that the Brauer–Manin conditions on the K3 covers of Y give
stronger constraints on rational points inside the adelic space of Y than
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the Brauer–Manin conditions on Y . In fact, in the above example one has
Y (AQ)ét,Br = ∅.

3.3. Counterexamples to the Hasse principle not explained by the
étale Brauer–Manin obstruction. Sarnak and Wang constructed the first
example of a variety over a number field for which no known obstruction
explains the failure of the Hasse principle, though their example is conditional
on the Bombieri–Lang conjecture. They exhibited a smooth hypersurface
Z ⊂ P6

Q of degree 1130 with Q-points such that ZC is a hyperbolic complex
manifold. The Bombieri–Lang conjecture then says that Z(Q) is finite. From
this, using the estimate of Lang–Weil, one easily deduces that infinitely many
smooth fibres X ⊂ P5

Q of a sufficiently general pencil of hyperplane sections
of Z are everywhere locally soluble, yet only finitely many contain rational
points. On the other hand, the geometry of X is such that Pic(X) ' Z as a
Galois module, Br(X) = 0 and the fundamental group of X is trivial. Thus
X(AQ)ét,Br 6= ∅ though X(Q) = ∅.

We finish this lecture by descring a simple recent example due to Colliot-
Thélène, Pál and the lecturer. It is based on a trick of Poonen.

Let us call a quadric bundle a surjective flat morphism f : X → B of smooth,
projective, geometrically integral varieties over a field k, where B is a curve,
the generic fibre of which is a smooth quadric of dimension at least 1, and all
geometric fibres are reduced. We denote by k(B) the function field of B, and
by Xk(B) the generic fibre of f : X → B.

Lemma 3.7. Let f : X → B be a quadric bundle over a field k of characteristic
zero. If all the fibres of f are geometrically integral, then the natural map
Br(B)→ Br(X) is surjective.

Lemma 3.8. Let f : X → B be a quadric bundle over a field k of characteristic
zero. Then any torsor X ′ → X of a finite k-group scheme G is the inverse
image under f of a torsor B′ → B of G.

Proof. By our definition of quadric bundles, the morphism f is flat and all
its geometric fibres are connected and reduced. The generic geometric fibre of
f is simply connected. By SGA1, Cor. X.2.4, this implies that each geometric
fibre of such a fibration is simply connected. The result then follows from
SGA1, Cor. IX.6.8. �

Let k be a number field with a real place. We fix a real place v, so we can
think of k as a subfield of kv = R.

Let C be a smooth, projective, geometrically integral curve over k such that
C(k) consists of just one point, C(k) = {P}. (By the work of Mazur–Rubin we
can take C to be an elliptic curve over k.) Let Π ⊂ C(R) be an open interval
containing P . Let f : C → P1

k be a surjective morphism that is unramified at
P . Choose a coordinate function t on A1

k = P1
k \f(P ) such that f is unramified

above t = 0. We have f(P ) =∞. Take any a > 0 in k such that a is an interior
point of the interval f(Π) and f is unramified above t = a.



RATIONAL POINTS ON HIGHER-DIMENSIONAL VARIETIES 23

Let w be a finite place of k. There exists a quadratic form Q(x0, x1, x2)
of rank 3 that represents zero in all completions of k other than kv and kw,
but not in kv or kw. We can assume that Q is positive definite over kv = R.
Choose n ∈ k with n > 0 in kv and −nQ(1, 0, 0) ∈ k∗2w . Let Y1 ⊂ P3

k × A1
k be

given by Q(x0, x1, x2) + nt(t − a)x2
3 = 0, and let Y2 ⊂ P3

k × A1
k be given by

Q(X0, X1, X2) + n(1− aT )X2
3 = 0. We glue Y1 and Y2 by identifying T = t−1,

X3 = tx3, and Xi = xi for i = 0, 1, 2. This produces a quadric bundle Y → P1
k

with exactly two degenerate fibres (over t = a and t = 0), each given by the
quadratic form Q(x0, x1, x2) of rank 3. Define X = Y ×P1

k
C. This is a quadric

bundle X → C with geometrically integral fibres.

Proposition 3.9 (Colliot-Thélène–Pál–S.). In the above notation we have
X(Ak)

Br 6= ∅ and X(k) = ∅. Moreover, X(Ak)
ét,Br 6= ∅.

In all known unconditional counterexamples to the Hasse principle which
cannot be explained by the Brauer–Manin obstruction the variety has non-
trivial geometric fundamental group. It would be very interesting to construct
such a counterexample on a geometrically simply connected variety, like in the
example of Sarnak and Wang.

3.4. Exercises. 1. Prove Lemma 3.7.

2. Prove Proposition 3.9 in the following steps.

(a) Show that for k = Q one can take Q(x0, x1, x2) = x2
0 + x2

1 + x2
2, kw = Q2

and n = 7.

(b) Show that X(k) = ∅.
(c) Show that X(Ak) 6= ∅.
(d) Show that X(Ak)

Br 6= ∅. (Hint: Use Lemma 3.7 and the fact that the
value of an element of Br(X) at a real point is a continuous function with
values in the discrete set {0, 1/2}, hence a locally constant function.)

(e)† Show that X(Ak)
ét,Br 6= ∅. (Hint: Use Lemma 3.8.)

4. Appendix

4.1. Quaternion algebras. Let k be a field of characteristic not equal to 2.

To elements a, b ∈ k∗ one can attach a non-commutative k-algebra (a ring
containing k). The quaternion algebra Q(a, b) is defined as the 4-dimensional
vector space over k with basis 1, i, j, ij and the multiplication table i2 = a,
j2 = b, ij = −ji.

Example. If k = R and a = b = −1 we obtain Hamilton’s quaternions H.
This is a division algebra: the set of units coincides with the set of non-zero
elements.

Is the same true for Q(a, b)? Define the conjugation and the norm, in the
usual way.

Define a pure quaternion as an element q such that q /∈ k but q2 ∈ k. It
follows that pure quaternions are exactly the elements of the form yi+zj+wij
(just square x+ yi+ zj+wij, then there are some cancellations, and if x 6= 0,
then y = z = w = 0). This gives an intrinsic definition of the conjugation and
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the norm because any quaternion z is uniquely written as the sum of a pure
quaternion and a scalar.

Exercise. If q is a pure quaternion such that q2 is not a square in k, then
1, q span a quadratic field which is a maximal subfield of Q.

Lemma 4.1. If c ∈ k∗ is a norm from k(
√
a)∗, then Q(a, b) ∼= Q(a, bc).

Proof. Write c = x2 − ay2, then set J = xj + yij. Then J is a pure
quaternion, so Ji = −iJ and J2 = −N(J) = bc. One checks that 1, i, J, iJ is
a basis, so we are done. �

When a quaternion algebra is a division algebra? Since N(q) = qq̄, if q is a
unit, then N(q) ∈ k∗. If N(q) = 0, then qq̄ = 0, so q is a zero divisor. Thus
the units are exactly the elements with non-zero norm. The norm on Q(a, b) is
the diagonal quadratic form 〈1,−a,−b, ab〉, and this leads us to the following
criterion.

Proposition 4.2. Let a, b ∈ k∗. Then the following statements are equivalent:

(i) Q(a, b) is not a division algebra;

(ii) Q(a, b) is isomorphic to the matrix algebra M2(k);

(iii) the diagonal quadratic form 〈1,−a,−b〉 represents zero;

(iv) the diagonal quadratic form 〈1,−a,−b, ab〉 represents zero;

(v) b is in the image of the norm homomorphism k(
√
a)∗ → k∗.

Proof. The equivalence of all of these is clear when a ∈ k∗2. Indeed, to
prove the equivalence with (ii) we can assume that a = 1. The matrix algebra
is spanned by

1 = Id =

(
1 0
0 1

)
, i =

(
1 0
0 −1

)
, j =

(
0 b
1 0

)
, ij =

(
0 b
−1 0

)
,

and so is isomorphic to Q(1, b).

Now assume that a is not a square. Then (i) is equivalent to (iv) since
N(q) = qq̄. (iv) implies (v) because the ratio of two non-zero norms is a norm.
(v) implies (iii) which implies (iv). So (iii), (iv) and (v) are equivalent (i). The
previous lemma shows that under the assumption of (v) the algebra Q(a, b) is
isomorphic to Q(a, a2) = Q(a, 1), so we use the result of the beginning of the
proof. �

If the conditions of this theorem are satisfied one says that Q(a, b) is split.
If K is an extension of k such that Q(a, b)⊗kK is split, then one says that K
splits Q(a, b).

We see that the quaternion algebra Q(a, b), where a, b ∈ k∗ is a form of the
2 × 2-matrix algebra, which means that Q(a, b) ⊗k k̄ ∼= M2(k̄). For example,
H⊗R C ∼= M2(C).

Proposition 4.3. Any quaternion algebra Q split by k(
√
a) contains this field

and can be written as Q = (a, c) for some c ∈ k∗. Conversely, if Q contains
k(
√
a), then Q is split by k(

√
a).
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Proof. If the algebra Q is split, take c = 1. Assume it is not. Then
N(q0 + q1

√
a) = 0 for some non-zero q0, q1 ∈ Q. Hence

N(q0) + aN(q1) + 2
√
aB(q0, q1) = 0,

where B is the bilinear form associated to the quadratic form N . This implies
that N(q0) + aN(q1) = 0 and 2B(q0, q1) = q0q̄1 + q1q̄0 = 0. Set I = q0/q1. We
have Ī = −I, hence I is a pure quaternion. Therefore, I2 = −N(I) = a. The
conjugation by I has order exactly 2 since I /∈ k (i.e. I is not in the centre
of Q). Hence the −1-eigenspace is non-zero, so we can find J ∈ Q such that
IJ + JI = 0. One then checks that 1, I, J, IJ is a basis, hence Q = (a, c),
where c = J2.

The converse follows from the fact that k(
√
a)⊗k(

√
a) contains zero devisors

(the norm form x2 − ay2 represents zero over k(
√
a)). Hence the same is true

for Q⊗ k(
√
a). �

Corollary 4.4. The quadratic fields that split Q are exactly the quadratic
subfields of Q.

4.2. Conics. Define the conic attached to the quaternion algebra Q(a, b) as
the plane algebraic curve C(a, b) ⊂ P2

k (a closed subset of the projective plane)
given by the equation

ax2 + by2 = z2.

It has a k-point if and only if Q(a, b) is split. An intrinsic definition is this:
C(a, b) is the conic

−ax2 − by2 + abz2 = 0,

which is just the expression for the norm of pure quaternions.

Facts about conics. 1. Since the characteristic of k is not 2, every conic can
be given by a diagonal quadratic form, and so is attached to some quaternion
algebra.

2. The projective line is isomorphic to a conic xz − y2 = 0 via map
(X : Y ) 7→ (X2 : XY : Y 2).

3. If a conic C has a k-point, then C ∼= P1
k. (The projection from a k-point

gives rise to a rational parameterisation of C, which is a bijection.)

4. Thus the function field k(C) is a purely transcendental extension of k if
and only if C has a k-point.

Exercise. 1. Check that Q(a, 1− a) and Q(a,−a) are split.

2. Check that if k = Fq is a finite field, then all quaternion algebras are
split. (If char(k) is not 2, write ax2 = 1 − by2 and use a counting argument
for x and y to prove the existence of a solution in Fq.)

3. Q(a, b) is split over k if and only if Q(a, b)⊗k k(t) is split over k(t). (Take
a k(t)-point on C(a, b) represented by three polynomials not all divisible by t,
and reduce modulo t.)

4. Q(a, b) is split over k(C(a, b)). (Consider the generic point of the conic.)

Theorem 4.5 (Tsen). If k is algebraically closed, then every quaternion
algebra over k(t) is split.
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Proof. We only prove that every quaternion algebra over k(t) is split. For
this it is enough to show that any conic over k(t) has a point. We can assume
that the coefficients of the corresponding quadratic form are polynomials of
degree at most m. We look for a solution (X, Y, Z) where X, Y and Z are
polynomials in t (not all of them zero) of degree n for some large integer n.
The coefficients of these polynomials can be thought of as points of P3n+2.
The solutions bijectively correspond to the points of a closed subset of P3n+2

given by 2n+m+1 homogeneous quadratic equations. Since k is algebraically
closed this set is non-empty when 3n + 2 ≥ 2n + m + 1, by a standard result
from algebraic geometry. (If an irreducible variety X is not contained in a
hypersurface H, then dim(X ∩ H) = dim(X) − 1. This implies that on
intersecting X with r hypersurfaces the dimension drops at most by r, see
[12, Ch. 1]). �

Theorem 4.6 (Witt). Two quaternions algebras are isomorphic if and only if
the conics attached to them are isomorphic.

Proof. Since CQ is defined intrinsically in terms of Q, it remains to prove
that if CQ ∼= CQ′ then Q ∼= Q′. If Q is split, then CQ ∼= P1

k, hence CQ′ ∼= P1
k.

Thus Q′ is split by the field of functions k(P1
k)
∼= k(t). Then Q′ is split by

Exercise 3 above.

Now assume that neither algebra is split. Write Q = Q(a, b) so that
CQ = C(a, b). The conic CQ ∼= CQ′ has a k(

√
a)-point, hence Q′ is split

by k(
√
a). By Proposition 4.3 we can write Q′ = Q(a, c) for some c ∈ k∗.

By Exercise 4 above Q′ is split by the function field k(CQ′) ∼= k(C(a, b)). By
Proposition 4.2 this implies that c is contained in the image of the norm map

c ∈ Im[k(C(a, b))(
√
a)∗ −→ k(C(a, b))∗].

Let σ ∈ Gal(k(
√
a)/k) ∼= Z/2 be the generator. Then we can write c = fσ(f),

where f is a rational function on the conic C(a, b)×k k(
√
a). One can replace

f with fσ(g)g−1 for any g ∈ k(C(a, b))(
√
a)∗ without changing c. Our aim

is to show that c is a product of a norm from k(
√
a)∗ and a power of b. The

power of b is odd because Q′ is not split over k, so this is enough to prove the
theorem.

The group Div of divisors on C(a, b)×k k(
√
a) ∼= P1

k(
√
a)

is freely generated

by the closed points of C(a, b)×k k(
√
a). This is a module of Z/2 = 〈σ〉 with

a σ-stable basis. The divisors of functions are exactly the divisors of degree 0.
The divisor D = div(f) is an element of Div satisfying (1 + σ)D = 0. Hence
there is G ∈ Div such that D = (1−σ)G. Let P = (1 : 0 :

√
a). If n = deg(G)

the divisor G − nP ∈ Div has degree 0, and thus G − nP = div(g) for some
g ∈ k(

√
a)(C(a, b))∗. We have

div(fσ(g)g−1) = D+σG−G+n(P −σP ) = n(P −σP ) = n div

(
z −
√
ax

y

)
.

It follows that

fσ(g)g−1 = e

(
z −
√
ax

y

)n
,
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where e ∈ k(
√
a)∗. Thus

c = fσ(f) = N(e)

(
z2 − ax2

y2

)n
= N(e)bn. �

4.3. Central simple algebras and the Brauer group. A k-algebra A is
called a central simple algebra if and only if A is a form of a matrix algebra,
that is, A⊗k k̄ ∼= Mn(k̄) for some positive integer n. Equivalently, the centre
of A is k (A is “central”) and A has no non-trivial two-sided ideals (A is
“simple”).

Recall that if V and W are vector spaces over k, then V ⊗kW is the linear
span of vectors v ⊗ w, v ∈ V , w ∈ W , subject to the axioms

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

and
c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw) for any c ∈ k.

This turns V ⊗kW into a k-vector space. Note that (V ⊗U)⊗W is canonically
isomorphic to V ⊗ (U ⊗W ).

If (ei) is a basis of V , and (fj) is a basis of W , then (ei ⊗ fj) is a basis of
V ⊗k W . Now, if V and W are k-algebras, then V ⊗k W is a k-algebra with
multiplication (x⊗ y) · (x′ ⊗ y′) = (xx′)⊗ (yy′).

Properties. 1. Mn(k) is a c.s.a.

2. Mm(k)⊗k Mn(k) ∼= Mmn(k). Hence the set of c.s.a. is closed under ⊗.

3. Q(a, b)⊗kQ(a, b′) ∼= Q(a, bb′)⊗kM2(k). (Proof: The span of 1⊗ 1, i⊗ 1,
j ⊗ j′, ij ⊗ j′ is A1 = Q(a, bb′). The span of 1⊗ 1, 1⊗ j′, i⊗ i′j′, −b(i⊗ i′) is
A2 = Q(b′,−a2b′) ∼= M2(k). The canonical map A1⊗kA2 → Q(a, b)⊗kQ(a, b′)
defined by the product, is surjective. The kernel of a homomorphism is a
two-sided ideal, hence it is zero so that this map is an isomorphism.)

4. Q(a, b)⊗k Q(a, b) ∼= M4(k). (This follows from parts 2 and 3.)

Two c.s.a. A and B are equivalent if there are n and m such that
A ⊗k Mn(k) ∼= B ⊗k Mm(k). The relation is transitive by Property 2. The
equivalence class of k consists of the matrix algebras of all sizes.

Theorem 4.7. The tensor product turns the set of equivalence classes of c.s.a.
into an abelian group, called the Braeur group Br(k).

Proof. The neutral element is the class of k and the inverse element of A is
the equivalence class of the opposite algebra A◦. Indeed, A ⊗k A◦ is a c.s.a.,
and there is a non-zero homomorphism A⊗k A◦ → Endk(A) that sends a⊗ b
to x 7→ axb. It is injective since a c.s.a. has no two-sided ideals, and hence is
an isomorphism by the dimension count. �

We denote by (a, b) ∈ Br(k) the class of the quaternion algebra Q(a, b).

We write the group operation in Br(k) additively. By Property 4 we have
(a, b) ∈ Br(k)[2] and (a, b) + (a, b′) = (a, bb′). We also have (a,−a) =
(a, 1− a) = 0 for any a, b, b′ ∈ k for which these symbols are defined.
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Examples. Br(R) = Z/2 and Br(Fq) = 0. (proofs are omitted) The full
version of Tsen’s theorem states (with a similar proof) that if k is algebraically
closed, then Br(k(t)) = 0.

Wedderburn’s theorem For any c.s.a. A there is a unique division algebra
D such that A ∼= D ⊗k Mn(k) = Mn(D).

Skolem–Noether theorem Let B be a simple algebra and let A be a c.s.a.
Then all non-zero homomorphisms B → A can be obtained from one another
by a conjugation in A.

This generalises the fact that any automorphism of Mn(k) is inner.
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