Problem 1. Let $K = \mathbb{Q}(i, \sqrt{17})$.

- (1) Show that for every prime number $p \neq 2, 17$, either -1 or 17 or -17 is a square modulo p (possibly all 3).
- (2) Show that p = 17 splits in $\mathbb{Q}(i)$ and that p = 2 splits in $\mathbb{Q}(\sqrt{17})$.
- (3) Deduce that every prime p of \mathbb{Q} splits into 2 or 4 primes of K, and consequently $\zeta_K(s)$ has every local polynomial $F_p(T)$ of the form $G_p(T)^2$ for some (usually quadratic) $G_p(T) \in \mathbb{Z}[T]$.

NB. In other words, just looking at the local factors, $\zeta_K(s)$ looks like a square of some reasonable function. But it certainly isn't! It has a simple pole at s = 1, so whatever $\prod_p G_p(p^{-s})^{-1}$ is, it does not have a meromorphic continuation to \mathbb{C} . (This gives some indication that meromorphic continuation is a subtle business, and we cannot expect it for any function with reasonable arithmetic coefficients.

Problem 2. Let p^n be a prime power and $F = \mathbb{Q}(\zeta)$, $\zeta = \zeta_{p^n}$, the p^n th cyclotomic field. It is a standard fact that the ring of integers of K is $\mathbb{Z}[\zeta]$, and that $\pi = 1 - \zeta$ generates the unique ideal above p,

$$(\pi)^{\phi(p^n)} = (p).$$

(1) Determine the decomposition group $D = D_p = D_{\pi}$, the inertia group $I = I_p = I_{\pi}$ in $\operatorname{Gal}(F/\mathbb{Q}) = (\mathbb{Z}/p^n\mathbb{Z})^{\times}$, and its filtration by the higher ramification groups

$$\{1\} = I_k \triangleleft \cdots \perp I_2 \triangleleft I_1 \triangleleft I_0 = I.$$

(2) Let χ be a primitive character of $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$, that is of modulus p^n . Prove, by definition of the conductor, that the associated 1-dimensional Galois representation ρ_{χ} of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ has conductor $N(\rho) = p^n$.

Hint: $\sigma \equiv \text{id mod } \pi^k \iff v_{\pi}(\zeta - \sigma(\zeta)) \ge k$. NB. The same argument, with a bit more notation, can be used to show that conductor=modulus for any Dirichlet character.

Problem 3. Let E/\mathbb{Q} be the elliptic curve $y^2 = x^3 + 1/4$.

- (1) On any elliptic curve $y^2 = x^3 + ax + b$ over \mathbb{Q} the x-coordinates of the 8 non-trivial 3-torsion points are roots of the 3-division polynomial $x^4 + 2ax^2 + 4bx a^2/3$. Use this to find E[3].
- (2) Find a basis of E[3] in which $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on E[3] as $\sigma \mapsto \begin{pmatrix} 1 & 0 \\ 0 & \chi(\sigma) \end{pmatrix}$, where χ is the non-trivial irreducible representation of $\operatorname{Gal}(\mathbb{Q}(\zeta_3)/\mathbb{Q})$.
- (3) Considering the 3-adic Tate module T_3E , show that for every prime p at which E has good reduction, the local factor of $L(E/\mathbb{Q}, s)$

$$F_p(T) = \det(1 - \operatorname{Frob}_p^{-1} T \mid V_3 E^*) = 1 - aT + pT^2$$

has $a \equiv 2 \mod 3$ if $p \equiv 1 \mod 3$ and $a \equiv 0 \mod 3$ if $p \equiv 2 \mod 3$.