Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C4

Direct product G=N×Q with N=C22 and Q=C2×C4

Semidirect products G=N:Q with N=C22 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C221(C2×C4) = C4×D4φ: C2×C4/C4C2 ⊆ Aut C2216C2^2:1(C2xC4)32,25
C222(C2×C4) = C2×C22⋊C4φ: C2×C4/C22C2 ⊆ Aut C2216C2^2:2(C2xC4)32,22

Non-split extensions G=N.Q with N=C22 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C4) = C8○D4φ: C2×C4/C4C2 ⊆ Aut C22162C2^2.1(C2xC4)32,38
C22.2(C2×C4) = C23⋊C4φ: C2×C4/C22C2 ⊆ Aut C2284+C2^2.2(C2xC4)32,6
C22.3(C2×C4) = C4.D4φ: C2×C4/C22C2 ⊆ Aut C2284+C2^2.3(C2xC4)32,7
C22.4(C2×C4) = C4.10D4φ: C2×C4/C22C2 ⊆ Aut C22164-C2^2.4(C2xC4)32,8
C22.5(C2×C4) = C42⋊C2φ: C2×C4/C22C2 ⊆ Aut C2216C2^2.5(C2xC4)32,24
C22.6(C2×C4) = C2.C42central extension (φ=1)32C2^2.6(C2xC4)32,2
C22.7(C2×C4) = C8⋊C4central extension (φ=1)32C2^2.7(C2xC4)32,4
C22.8(C2×C4) = C22⋊C8central extension (φ=1)16C2^2.8(C2xC4)32,5
C22.9(C2×C4) = C4⋊C8central extension (φ=1)32C2^2.9(C2xC4)32,12
C22.10(C2×C4) = C2×C4⋊C4central extension (φ=1)32C2^2.10(C2xC4)32,23
C22.11(C2×C4) = C2×M4(2)central extension (φ=1)16C2^2.11(C2xC4)32,37