Extensions 1→N→G→Q→1 with N=C22 and Q=D4

Direct product G=N×Q with N=C22 and Q=D4

Semidirect products G=N:Q with N=C22 and Q=D4
extensionφ:Q→Aut NdρLabelID
C221D4 = C4⋊D4φ: D4/C4C2 ⊆ Aut C2216C2^2:1D432,28
C222D4 = C22≀C2φ: D4/C22C2 ⊆ Aut C228C2^2:2D432,27

Non-split extensions G=N.Q with N=C22 and Q=D4
extensionφ:Q→Aut NdρLabelID
C22.1D4 = C4○D8φ: D4/C4C2 ⊆ Aut C22162C2^2.1D432,42
C22.2D4 = C23⋊C4φ: D4/C22C2 ⊆ Aut C2284+C2^2.2D432,6
C22.3D4 = C4≀C2φ: D4/C22C2 ⊆ Aut C2282C2^2.3D432,11
C22.4D4 = C22.D4φ: D4/C22C2 ⊆ Aut C2216C2^2.4D432,30
C22.5D4 = C8⋊C22φ: D4/C22C2 ⊆ Aut C2284+C2^2.5D432,43
C22.6D4 = C8.C22φ: D4/C22C2 ⊆ Aut C22164-C2^2.6D432,44
C22.7D4 = C2.C42central extension (φ=1)32C2^2.7D432,2
C22.8D4 = D4⋊C4central extension (φ=1)16C2^2.8D432,9
C22.9D4 = Q8⋊C4central extension (φ=1)32C2^2.9D432,10
C22.10D4 = C4.Q8central extension (φ=1)32C2^2.10D432,13
C22.11D4 = C2.D8central extension (φ=1)32C2^2.11D432,14
C22.12D4 = C2×C22⋊C4central extension (φ=1)16C2^2.12D432,22
C22.13D4 = C2×C4⋊C4central extension (φ=1)32C2^2.13D432,23
C22.14D4 = C2×D8central extension (φ=1)16C2^2.14D432,39
C22.15D4 = C2×SD16central extension (φ=1)16C2^2.15D432,40
C22.16D4 = C2×Q16central extension (φ=1)32C2^2.16D432,41