Copied to
clipboard

G = C42.116D4order 128 = 27

98th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.116D4, (C2×D8)⋊11C4, C4.24(C4×D4), (C2×Q16)⋊11C4, (C2×SD16)⋊6C4, (C2×C8).112D4, C8.3(C22⋊C4), C4.53(C41D4), C22.188(C4×D4), C2.19(C8.26D4), C4.206(C4⋊D4), C23.212(C4○D4), C22.20(C4⋊D4), (C2×C42).325C22, (C22×C8).409C22, C22.2(C4.4D4), (C22×C4).1415C23, (C2×M4(2)).212C22, C2.27(C24.3C22), (C2×C4≀C2)⋊21C2, (C2×C8⋊C4)⋊3C2, (C2×C8).74(C2×C4), (C2×C4○D8).7C2, (C2×C4).743(C2×D4), C4.43(C2×C22⋊C4), (C2×Q8).99(C2×C4), (C2×C8.C4)⋊11C2, (C2×D4).114(C2×C4), (C22×C8)⋊C225C2, (C2×C4).606(C4○D4), (C2×C4).429(C22×C4), (C2×C4○D4).40C22, SmallGroup(128,707)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.116D4
C1C2C4C2×C4C22×C4C22×C8C2×C8⋊C4 — C42.116D4
C1C2C2×C4 — C42.116D4
C1C2×C4C22×C8 — C42.116D4
C1C2C2C22×C4 — C42.116D4

Generators and relations for C42.116D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1, ab=ba, cac-1=ab2, dad-1=a-1b, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 292 in 146 conjugacy classes, 56 normal (28 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×4], C4 [×4], C22 [×3], C22 [×8], C8 [×4], C8 [×4], C2×C4 [×6], C2×C4 [×10], D4 [×8], Q8 [×4], C23, C23 [×2], C42 [×2], C42, C2×C8 [×2], C2×C8 [×6], C2×C8 [×4], M4(2) [×4], D8 [×2], SD16 [×4], Q16 [×2], C22×C4, C22×C4 [×3], C2×D4 [×2], C2×D4 [×2], C2×Q8 [×2], C4○D4 [×8], C8⋊C4 [×2], C22⋊C8 [×4], C4≀C2 [×4], C8.C4 [×2], C2×C42, C22×C8 [×2], C2×M4(2) [×2], C2×D8, C2×SD16 [×2], C2×Q16, C4○D8 [×4], C2×C4○D4 [×2], C2×C8⋊C4, (C22×C8)⋊C2 [×2], C2×C4≀C2 [×2], C2×C8.C4, C2×C4○D8, C42.116D4
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×8], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×4], C4○D4 [×2], C2×C22⋊C4, C4×D4 [×2], C4⋊D4 [×2], C4.4D4, C41D4, C24.3C22, C8.26D4 [×2], C42.116D4

Smallest permutation representation of C42.116D4
On 32 points
Generators in S32
(1 7 5 3)(2 4 6 8)(9 28)(10 25)(11 30)(12 27)(13 32)(14 29)(15 26)(16 31)(17 23 21 19)(18 20 22 24)
(1 23 5 19)(2 24 6 20)(3 17 7 21)(4 18 8 22)(9 26 13 30)(10 27 14 31)(11 28 15 32)(12 29 16 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10 19 31 5 14 23 27)(2 13 20 26 6 9 24 30)(3 16 21 29 7 12 17 25)(4 11 22 32 8 15 18 28)

G:=sub<Sym(32)| (1,7,5,3)(2,4,6,8)(9,28)(10,25)(11,30)(12,27)(13,32)(14,29)(15,26)(16,31)(17,23,21,19)(18,20,22,24), (1,23,5,19)(2,24,6,20)(3,17,7,21)(4,18,8,22)(9,26,13,30)(10,27,14,31)(11,28,15,32)(12,29,16,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,19,31,5,14,23,27)(2,13,20,26,6,9,24,30)(3,16,21,29,7,12,17,25)(4,11,22,32,8,15,18,28)>;

G:=Group( (1,7,5,3)(2,4,6,8)(9,28)(10,25)(11,30)(12,27)(13,32)(14,29)(15,26)(16,31)(17,23,21,19)(18,20,22,24), (1,23,5,19)(2,24,6,20)(3,17,7,21)(4,18,8,22)(9,26,13,30)(10,27,14,31)(11,28,15,32)(12,29,16,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10,19,31,5,14,23,27)(2,13,20,26,6,9,24,30)(3,16,21,29,7,12,17,25)(4,11,22,32,8,15,18,28) );

G=PermutationGroup([(1,7,5,3),(2,4,6,8),(9,28),(10,25),(11,30),(12,27),(13,32),(14,29),(15,26),(16,31),(17,23,21,19),(18,20,22,24)], [(1,23,5,19),(2,24,6,20),(3,17,7,21),(4,18,8,22),(9,26,13,30),(10,27,14,31),(11,28,15,32),(12,29,16,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10,19,31,5,14,23,27),(2,13,20,26,6,9,24,30),(3,16,21,29,7,12,17,25),(4,11,22,32,8,15,18,28)])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L8A···8H8I8J8K8L
order122222224444444444448···88888
size111122881111224444884···48888

32 irreducible representations

dim11111111122224
type++++++++
imageC1C2C2C2C2C2C4C4C4D4D4C4○D4C4○D4C8.26D4
kernelC42.116D4C2×C8⋊C4(C22×C8)⋊C2C2×C4≀C2C2×C8.C4C2×C4○D8C2×D8C2×SD16C2×Q16C42C2×C8C2×C4C23C2
# reps11221124226224

Matrix representation of C42.116D4 in GL6(𝔽17)

400000
040000
0013000
000400
000010
0000016
,
1600000
0160000
004000
000400
000040
000004
,
16150000
110000
000100
004000
000004
0000160
,
930000
180000
000004
0000160
000400
0016000

G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[16,1,0,0,0,0,15,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,4,0],[9,1,0,0,0,0,3,8,0,0,0,0,0,0,0,0,0,16,0,0,0,0,4,0,0,0,0,16,0,0,0,0,4,0,0,0] >;

C42.116D4 in GAP, Magma, Sage, TeX

C_4^2._{116}D_4
% in TeX

G:=Group("C4^2.116D4");
// GroupNames label

G:=SmallGroup(128,707);
// by ID

G=gap.SmallGroup(128,707);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,723,100,2019,248,2804,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽