Copied to
clipboard

G = C8.C42order 128 = 27

1st non-split extension by C8 of C42 acting via C42/C22=C22

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C8.1C42, M5(2)⋊8C4, C23.33D8, C2.D89C4, C4.Q84C4, (C2×C8).5Q8, C8.28(C4⋊C4), (C2×C4).8Q16, (C2×C8).362D4, C4.3(C4.Q8), (C2×C4).21SD16, C2.3(D82C4), C8.42(C22⋊C4), C4.7(Q8⋊C4), (C22×C4).192D4, C22.3(C2.D8), (C2×M5(2)).14C2, C4.7(C2.C42), (C22×C8).205C22, C23.25D4.9C2, C22.46(D4⋊C4), C2.16(C22.4Q16), (C2×C8).52(C2×C4), (C2×C4.Q8).2C2, (C2×C4).28(C4⋊C4), (C2×C4).230(C22⋊C4), SmallGroup(128,118)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C8.C42
C1C2C4C8C2×C8C22×C8C2×M5(2) — C8.C42
C1C2C4C8 — C8.C42
C1C22C22×C4C22×C8 — C8.C42
C1C2C2C2C2C4C4C22×C8 — C8.C42

Generators and relations for C8.C42
 G = < a,b,c | a8=b4=1, c4=a6, bab-1=a-1, cac-1=a5, cbc-1=a3b >

Subgroups: 152 in 70 conjugacy classes, 40 normal (32 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×4], C4 [×4], C22 [×3], C22 [×2], C8 [×4], C2×C4 [×6], C2×C4 [×6], C23, C16 [×2], C42, C22⋊C4, C4⋊C4 [×5], C2×C8 [×6], C22×C4, C22×C4, C4.Q8 [×2], C4.Q8 [×2], C2.D8 [×2], C2×C16, M5(2) [×2], M5(2), C2×C4⋊C4, C42⋊C2, C22×C8, C2×C4.Q8, C23.25D4, C2×M5(2), C8.C42
Quotients: C1, C2 [×3], C4 [×6], C22, C2×C4 [×3], D4 [×3], Q8, C42, C22⋊C4 [×3], C4⋊C4 [×3], D8, SD16 [×2], Q16, C2.C42, D4⋊C4 [×2], Q8⋊C4 [×2], C4.Q8, C2.D8, C22.4Q16, D82C4 [×2], C8.C42

Smallest permutation representation of C8.C42
On 32 points
Generators in S32
(1 26 13 22 9 18 5 30)(2 19 14 31 10 27 6 23)(3 28 15 24 11 20 7 32)(4 21 16 17 12 29 8 25)
(1 14 28 25)(2 24 29 13)(3 4 30 31)(5 10 32 21)(6 20 17 9)(7 16 18 27)(8 26 19 15)(11 12 22 23)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,26,13,22,9,18,5,30)(2,19,14,31,10,27,6,23)(3,28,15,24,11,20,7,32)(4,21,16,17,12,29,8,25), (1,14,28,25)(2,24,29,13)(3,4,30,31)(5,10,32,21)(6,20,17,9)(7,16,18,27)(8,26,19,15)(11,12,22,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;

G:=Group( (1,26,13,22,9,18,5,30)(2,19,14,31,10,27,6,23)(3,28,15,24,11,20,7,32)(4,21,16,17,12,29,8,25), (1,14,28,25)(2,24,29,13)(3,4,30,31)(5,10,32,21)(6,20,17,9)(7,16,18,27)(8,26,19,15)(11,12,22,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );

G=PermutationGroup([(1,26,13,22,9,18,5,30),(2,19,14,31,10,27,6,23),(3,28,15,24,11,20,7,32),(4,21,16,17,12,29,8,25)], [(1,14,28,25),(2,24,29,13),(3,4,30,31),(5,10,32,21),(6,20,17,9),(7,16,18,27),(8,26,19,15),(11,12,22,23)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)])

32 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4L8A8B8C8D8E8F16A···16H
order12222244444···488888816···16
size11112222228···82222444···4

32 irreducible representations

dim11111112222224
type+++++-+-+
imageC1C2C2C2C4C4C4D4Q8D4SD16Q16D8D82C4
kernelC8.C42C2×C4.Q8C23.25D4C2×M5(2)C4.Q8C2.D8M5(2)C2×C8C2×C8C22×C4C2×C4C2×C4C23C2
# reps11114442114224

Matrix representation of C8.C42 in GL6(𝔽17)

1600000
0160000
005500
0012500
00001212
0000512
,
0160000
100000
0000125
000055
0051200
00121200
,
0130000
1300000
000010
000001
0012500
00121200

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,5,12,0,0,0,0,5,5,0,0,0,0,0,0,12,5,0,0,0,0,12,12],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,0,5,12,0,0,0,0,12,12,0,0,12,5,0,0,0,0,5,5,0,0],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,5,12,0,0,1,0,0,0,0,0,0,1,0,0] >;

C8.C42 in GAP, Magma, Sage, TeX

C_8.C_4^2
% in TeX

G:=Group("C8.C4^2");
// GroupNames label

G:=SmallGroup(128,118);
// by ID

G=gap.SmallGroup(128,118);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,723,520,1684,102,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^8=b^4=1,c^4=a^6,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^3*b>;
// generators/relations

׿
×
𝔽