# Extensions 1→N→G→Q→1 with N=C23 and Q=SD16

Direct product G=N×Q with N=C23 and Q=SD16
dρLabelID
C23×SD1664C2^3xSD16128,2307

Semidirect products G=N:Q with N=C23 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C231SD16 = C23⋊SD16φ: SD16/C2D4 ⊆ Aut C2316C2^3:1SD16128,328
C232SD16 = C232SD16φ: SD16/C2D4 ⊆ Aut C2332C2^3:2SD16128,333
C233SD16 = C233SD16φ: SD16/C4C22 ⊆ Aut C2364C2^3:3SD16128,732
C234SD16 = C234SD16φ: SD16/C4C22 ⊆ Aut C2332C2^3:4SD16128,1919
C235SD16 = C2×C88D4φ: SD16/C8C2 ⊆ Aut C2364C2^3:5SD16128,1779
C236SD16 = C2×C22⋊SD16φ: SD16/D4C2 ⊆ Aut C2332C2^3:6SD16128,1729
C237SD16 = C2×Q8⋊D4φ: SD16/Q8C2 ⊆ Aut C2364C2^3:7SD16128,1730

Non-split extensions G=N.Q with N=C23 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C23.1SD16 = C23.SD16φ: SD16/C2D4 ⊆ Aut C23168+C2^3.1SD16128,73
C23.2SD16 = C23.2SD16φ: SD16/C2D4 ⊆ Aut C23328-C2^3.2SD16128,74
C23.3SD16 = C24.D4φ: SD16/C2D4 ⊆ Aut C2316C2^3.3SD16128,75
C23.4SD16 = C23.4D8φ: SD16/C2D4 ⊆ Aut C2332C2^3.4SD16128,76
C23.5SD16 = C23.Q16φ: SD16/C2D4 ⊆ Aut C2332C2^3.5SD16128,83
C23.6SD16 = C24.4D4φ: SD16/C2D4 ⊆ Aut C2332C2^3.6SD16128,84
C23.7SD16 = C24.14D4φ: SD16/C2D4 ⊆ Aut C2332C2^3.7SD16128,340
C23.8SD16 = C24.16D4φ: SD16/C2D4 ⊆ Aut C2332C2^3.8SD16128,345
C23.9SD16 = M5(2).C22φ: SD16/C2D4 ⊆ Aut C23168+C2^3.9SD16128,970
C23.10SD16 = C23.10SD16φ: SD16/C2D4 ⊆ Aut C23328-C2^3.10SD16128,971
C23.11SD16 = C23.8D8φ: SD16/C4C22 ⊆ Aut C2332C2^3.11SD16128,21
C23.12SD16 = C23.12SD16φ: SD16/C4C22 ⊆ Aut C2364C2^3.12SD16128,81
C23.13SD16 = C23.13SD16φ: SD16/C4C22 ⊆ Aut C2364C2^3.13SD16128,82
C23.14SD16 = C8.4C42φ: SD16/C4C22 ⊆ Aut C23324C2^3.14SD16128,121
C23.15SD16 = C24.60D4φ: SD16/C4C22 ⊆ Aut C2332C2^3.15SD16128,251
C23.16SD16 = C24.61D4φ: SD16/C4C22 ⊆ Aut C2332C2^3.16SD16128,252
C23.17SD16 = C24.84D4φ: SD16/C4C22 ⊆ Aut C2364C2^3.17SD16128,766
C23.18SD16 = C24.85D4φ: SD16/C4C22 ⊆ Aut C2364C2^3.18SD16128,767
C23.19SD16 = C24.89D4φ: SD16/C4C22 ⊆ Aut C2364C2^3.19SD16128,809
C23.20SD16 = C23.20SD16φ: SD16/C4C22 ⊆ Aut C23324C2^3.20SD16128,875
C23.21SD16 = C23.21SD16φ: SD16/C4C22 ⊆ Aut C23324C2^3.21SD16128,880
C23.22SD16 = M5(2)⋊3C4φ: SD16/C4C22 ⊆ Aut C23324C2^3.22SD16128,887
C23.23SD16 = C8.9C42φ: SD16/C8C2 ⊆ Aut C2364C2^3.23SD16128,114
C23.24SD16 = C24.133D4φ: SD16/C8C2 ⊆ Aut C2364C2^3.24SD16128,539
C23.25SD16 = C24.135D4φ: SD16/C8C2 ⊆ Aut C2364C2^3.25SD16128,624
C23.26SD16 = C23.23D8φ: SD16/C8C2 ⊆ Aut C2364C2^3.26SD16128,625
C23.27SD16 = C2×D8.C4φ: SD16/C8C2 ⊆ Aut C2364C2^3.27SD16128,874
C23.28SD16 = C23.30D8φ: SD16/D4C2 ⊆ Aut C2332C2^3.28SD16128,26
C23.29SD16 = C8.11C42φ: SD16/D4C2 ⊆ Aut C2332C2^3.29SD16128,115
C23.30SD16 = C8.2C42φ: SD16/D4C2 ⊆ Aut C2364C2^3.30SD16128,119
C23.31SD16 = C2×C23.31D4φ: SD16/D4C2 ⊆ Aut C2332C2^3.31SD16128,231
C23.32SD16 = C23.35D8φ: SD16/D4C2 ⊆ Aut C2332C2^3.32SD16128,518
C23.33SD16 = C23.36D8φ: SD16/D4C2 ⊆ Aut C2364C2^3.33SD16128,555
C23.34SD16 = C24.159D4φ: SD16/D4C2 ⊆ Aut C2364C2^3.34SD16128,585
C23.35SD16 = C24.160D4φ: SD16/D4C2 ⊆ Aut C2364C2^3.35SD16128,604
C23.36SD16 = C2×M5(2)⋊C2φ: SD16/D4C2 ⊆ Aut C2332C2^3.36SD16128,878
C23.37SD16 = C2×C8.17D4φ: SD16/D4C2 ⊆ Aut C2364C2^3.37SD16128,879
C23.38SD16 = C2×C8.Q8φ: SD16/D4C2 ⊆ Aut C2332C2^3.38SD16128,886
C23.39SD16 = C2×C23.47D4φ: SD16/D4C2 ⊆ Aut C2364C2^3.39SD16128,1818
C23.40SD16 = C2×C22.SD16φ: SD16/Q8C2 ⊆ Aut C2332C2^3.40SD16128,230
C23.41SD16 = C24.155D4φ: SD16/Q8C2 ⊆ Aut C2364C2^3.41SD16128,519
C23.42SD16 = C24.157D4φ: SD16/Q8C2 ⊆ Aut C2364C2^3.42SD16128,556
C23.43SD16 = C23.38D8φ: SD16/Q8C2 ⊆ Aut C2364C2^3.43SD16128,606
C23.44SD16 = C2×C23.46D4φ: SD16/Q8C2 ⊆ Aut C2364C2^3.44SD16128,1821
C23.45SD16 = C2×C22.4Q16central extension (φ=1)128C2^3.45SD16128,466
C23.46SD16 = C22×D4⋊C4central extension (φ=1)64C2^3.46SD16128,1622
C23.47SD16 = C22×Q8⋊C4central extension (φ=1)128C2^3.47SD16128,1623
C23.48SD16 = C22×C4.Q8central extension (φ=1)128C2^3.48SD16128,1639

׿
×
𝔽