# Extensions 1→N→G→Q→1 with N=C2×C22≀C2 and Q=C2

Direct product G=N×Q with N=C2×C22≀C2 and Q=C2
dρLabelID
C22×C22≀C232C2^2xC2^2wrC2128,2163

Semidirect products G=N:Q with N=C2×C22≀C2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C22≀C2)⋊1C2 = C24⋊D4φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2):1C2128,753
(C2×C22≀C2)⋊2C2 = C247D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):2C2128,1135
(C2×C22≀C2)⋊3C2 = C23.304C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):3C2128,1136
(C2×C22≀C2)⋊4C2 = C23.308C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):4C2128,1140
(C2×C22≀C2)⋊5C2 = C248D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):5C2128,1142
(C2×C22≀C2)⋊6C2 = C23.324C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):6C2128,1156
(C2×C22≀C2)⋊7C2 = C23.333C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):7C2128,1165
(C2×C22≀C2)⋊8C2 = C23.439C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):8C2128,1271
(C2×C22≀C2)⋊9C2 = C249D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):9C2128,1345
(C2×C22≀C2)⋊10C2 = C2410D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):10C2128,1349
(C2×C22≀C2)⋊11C2 = C23.568C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):11C2128,1400
(C2×C22≀C2)⋊12C2 = C23.569C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):12C2128,1401
(C2×C22≀C2)⋊13C2 = C23.570C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):13C2128,1402
(C2×C22≀C2)⋊14C2 = C23.578C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):14C2128,1410
(C2×C22≀C2)⋊15C2 = C25⋊C22φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):15C2128,1411
(C2×C22≀C2)⋊16C2 = C2411D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):16C2128,1544
(C2×C22≀C2)⋊17C2 = C23≀C2φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2):17C2128,1578
(C2×C22≀C2)⋊18C2 = C2413D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):18C2128,1579
(C2×C22≀C2)⋊19C2 = C2×C2≀C22φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2):19C2128,1755
(C2×C22≀C2)⋊20C2 = C2×C233D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):20C2128,2177
(C2×C22≀C2)⋊21C2 = C2×C22.29C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):21C2128,2178
(C2×C22≀C2)⋊22C2 = C2×C22.32C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):22C2128,2182
(C2×C22≀C2)⋊23C2 = C2×D42φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):23C2128,2194
(C2×C22≀C2)⋊24C2 = C2×D45D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):24C2128,2195
(C2×C22≀C2)⋊25C2 = C22.73C25φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2):25C2128,2216
(C2×C22≀C2)⋊26C2 = C22.79C25φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2):26C2128,2222
(C2×C22≀C2)⋊27C2 = C2×C22.54C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):27C2128,2257
(C2×C22≀C2)⋊28C2 = C2×C24⋊C22φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2):28C2128,2258
(C2×C22≀C2)⋊29C2 = C42⋊C23φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2):29C2128,2264
(C2×C22≀C2)⋊30C2 = C2×C22.19C24φ: trivial image32(C2xC2^2wrC2):30C2128,2167

Non-split extensions G=N.Q with N=C2×C22≀C2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C22≀C2).1C2 = C25.C22φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2).1C2128,621
(C2×C22≀C2).2C2 = C24.78D4φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2).2C2128,630
(C2×C22≀C2).3C2 = C2×C2≀C4φ: C2/C1C2 ⊆ Out C2×C22≀C216(C2xC2^2wrC2).3C2128,850
(C2×C22≀C2).4C2 = C23.203C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).4C2128,1053
(C2×C22≀C2).5C2 = C23.240C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).5C2128,1090
(C2×C22≀C2).6C2 = C23.257C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).6C2128,1107
(C2×C22≀C2).7C2 = C23.311C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).7C2128,1143
(C2×C22≀C2).8C2 = C24.95D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).8C2128,1144
(C2×C22≀C2).9C2 = C23.318C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).9C2128,1150
(C2×C22≀C2).10C2 = C23.372C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).10C2128,1204
(C2×C22≀C2).11C2 = C23.434C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).11C2128,1266
(C2×C22≀C2).12C2 = C24.97D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).12C2128,1354
(C2×C22≀C2).13C2 = C23.584C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).13C2128,1416
(C2×C22≀C2).14C2 = C23.585C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).14C2128,1417
(C2×C22≀C2).15C2 = C23.597C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).15C2128,1429
(C2×C22≀C2).16C2 = C24.166D4φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).16C2128,1581
(C2×C22≀C2).17C2 = C2×C22.45C24φ: C2/C1C2 ⊆ Out C2×C22≀C232(C2xC2^2wrC2).17C2128,2201
(C2×C22≀C2).18C2 = C4×C22≀C2φ: trivial image32(C2xC2^2wrC2).18C2128,1031

׿
×
𝔽