Extensions 1→N→G→Q→1 with N=C2≀C22 and Q=C2

Direct product G=N×Q with N=C2≀C22 and Q=C2

Semidirect products G=N:Q with N=C2≀C22 and Q=C2
extensionφ:Q→Out NdρLabelID
C2≀C221C2 = D4≀C2φ: C2/C1C2 ⊆ Out C2≀C2284+C2wrC2^2:1C2128,928
C2≀C222C2 = C425D4φ: C2/C1C2 ⊆ Out C2≀C22168+C2wrC2^2:2C2128,931
C2≀C223C2 = C426D4φ: C2/C1C2 ⊆ Out C2≀C22168+C2wrC2^2:3C2128,932
C2≀C224C2 = C24⋊C23φ: C2/C1C2 ⊆ Out C2≀C22168+C2wrC2^2:4C2128,1758
C2≀C225C2 = C23.9C24φ: C2/C1C2 ⊆ Out C2≀C22168+C2wrC2^2:5C2128,1759
C2≀C226C2 = C23.7C24φ: trivial image164C2wrC2^2:6C2128,1757

Non-split extensions G=N.Q with N=C2≀C22 and Q=C2
extensionφ:Q→Out NdρLabelID
C2≀C22.C2 = C424D4φ: C2/C1C2 ⊆ Out C2≀C22164C2wrC2^2.C2128,929