# Extensions 1→N→G→Q→1 with N=C22×Q16 and Q=C2

Direct product G=N×Q with N=C22×Q16 and Q=C2
dρLabelID
C23×Q16128C2^3xQ16128,2308

Semidirect products G=N:Q with N=C22×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Q16)⋊1C2 = C232Q16φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):1C2128,733
(C22×Q16)⋊2C2 = (C2×C8).41D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):2C2128,747
(C22×Q16)⋊3C2 = M4(2).6D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):3C2128,752
(C22×Q16)⋊4C2 = Q167D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):4C2128,917
(C22×Q16)⋊5C2 = C2×C22⋊Q16φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):5C2128,1731
(C22×Q16)⋊6C2 = C2×D4.7D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):6C2128,1733
(C22×Q16)⋊7C2 = Q8.(C2×D4)φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):7C2128,1743
(C22×Q16)⋊8C2 = C2×Q8.D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):8C2128,1766
(C22×Q16)⋊9C2 = C42.17C23φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):9C2128,1776
(C22×Q16)⋊10C2 = C2×C8.18D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):10C2128,1781
(C22×Q16)⋊11C2 = C2×C8.12D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):11C2128,1878
(C22×Q16)⋊12C2 = Q1612D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):12C2128,2017
(C22×Q16)⋊13C2 = D4×Q16φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):13C2128,2018
(C22×Q16)⋊14C2 = C22×SD32φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):14C2128,2141
(C22×Q16)⋊15C2 = C2×C8.D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):15C2128,1785
(C22×Q16)⋊16C2 = C8.D4⋊C2φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):16C2128,1791
(C22×Q16)⋊17C2 = C2×D4.5D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):17C2128,1798
(C22×Q16)⋊18C2 = C2×C8.2D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):18C2128,1881
(C22×Q16)⋊19C2 = M4(2).20D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):19C2128,1888
(C22×Q16)⋊20C2 = Q169D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):20C2128,2002
(C22×Q16)⋊21C2 = C2×Q32⋊C2φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):21C2128,2145
(C22×Q16)⋊22C2 = C22×C8.C22φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):22C2128,2311
(C22×Q16)⋊23C2 = C2×Q8○D8φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16):23C2128,2315
(C22×Q16)⋊24C2 = C22×C4○D8φ: trivial image64(C2^2xQ16):24C2128,2309

Non-split extensions G=N.Q with N=C22×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Q16).1C2 = (C2×C4)⋊9Q16φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).1C2128,610
(C22×Q16).2C2 = (C2×C4)⋊6Q16φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).2C2128,701
(C22×Q16).3C2 = (C2×C4)⋊2Q16φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).3C2128,748
(C22×Q16).4C2 = C4⋊C4.98D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16).4C2128,779
(C22×Q16).5C2 = (C2×C4)⋊3Q16φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).5C2128,788
(C22×Q16).6C2 = C2×C2.Q32φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).6C2128,869
(C22×Q16).7C2 = Q16.8D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16).7C2128,920
(C22×Q16).8C2 = C2×C42Q16φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).8C2128,1765
(C22×Q16).9C2 = C2×C4⋊Q16φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).9C2128,1877
(C22×Q16).10C2 = C22×Q32φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).10C2128,2142
(C22×Q16).11C2 = (C2×Q16)⋊10C4φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).11C2128,703
(C22×Q16).12C2 = M4(2).33D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16).12C2128,711
(C22×Q16).13C2 = C23.41D8φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16).13C2128,873
(C22×Q16).14C2 = C2×C8.17D4φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16).14C2128,879
(C22×Q16).15C2 = C2×Q16⋊C4φ: C2/C1C2 ⊆ Out C22×Q16128(C2^2xQ16).15C2128,1673
(C22×Q16).16C2 = C42.279C23φ: C2/C1C2 ⊆ Out C22×Q1664(C2^2xQ16).16C2128,1682
(C22×Q16).17C2 = C2×C4×Q16φ: trivial image128(C2^2xQ16).17C2128,1670

׿
×
𝔽