Copied to
clipboard

G = C23.250C24order 128 = 27

103rd central extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.250C24, C24.559C23, C22.822+ 1+4, C22⋊Q821C4, C22⋊C423Q8, C22.11(C4×Q8), C2.6(D43Q8), C23.116(C2×Q8), (C2×C42).26C22, C23.8Q8.8C2, C23.295(C4○D4), C22.45(C22×Q8), (C23×C4).312C22, (C22×C4).769C23, C22.141(C23×C4), C23.134(C22×C4), (C22×Q8).91C22, C23.63C2321C2, C23.67C2323C2, C2.6(C22.45C24), C2.33(C22.11C24), C2.C42.526C22, (C4×C4⋊C4)⋊48C2, C4⋊C417(C2×C4), C2.20(C2×C4×Q8), (C2×Q8)⋊15(C2×C4), C2.38(C4×C4○D4), (C2×C4).253(C2×Q8), C22⋊C4.33(C2×C4), (C4×C22⋊C4).31C2, (C2×C4).48(C22×C4), (C2×C22⋊Q8).20C2, (C2×C4).724(C4○D4), (C2×C4⋊C4).190C22, (C22×C4).316(C2×C4), C22.135(C2×C4○D4), (C2×C22⋊C4).558C22, C22⋊C44(C2.C42), (C2×C2.C42).21C2, SmallGroup(128,1100)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C23.250C24
C1C2C22C23C24C23×C4C4×C22⋊C4 — C23.250C24
C1C22 — C23.250C24
C1C23 — C23.250C24
C1C23 — C23.250C24

Generators and relations for C23.250C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=c, e2=cb=bc, f2=ba=ab, ac=ca, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >

Subgroups: 460 in 274 conjugacy classes, 152 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×24], C22 [×3], C22 [×8], C22 [×12], C2×C4 [×20], C2×C4 [×44], Q8 [×4], C23, C23 [×6], C23 [×4], C42 [×8], C22⋊C4 [×12], C22⋊C4 [×2], C4⋊C4 [×12], C4⋊C4 [×6], C22×C4 [×2], C22×C4 [×16], C22×C4 [×12], C2×Q8 [×4], C2×Q8 [×2], C24, C2.C42 [×2], C2.C42 [×12], C2×C42 [×6], C2×C22⋊C4 [×2], C2×C22⋊C4 [×2], C2×C4⋊C4, C2×C4⋊C4 [×6], C22⋊Q8 [×8], C23×C4, C23×C4 [×2], C22×Q8, C2×C2.C42, C4×C22⋊C4, C4×C22⋊C4 [×2], C4×C4⋊C4 [×2], C23.8Q8 [×2], C23.63C23 [×4], C23.67C23 [×2], C2×C22⋊Q8, C23.250C24
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], Q8 [×4], C23 [×15], C22×C4 [×14], C2×Q8 [×6], C4○D4 [×6], C24, C4×Q8 [×4], C23×C4, C22×Q8, C2×C4○D4 [×3], 2+ 1+4 [×2], C2×C4×Q8, C4×C4○D4, C22.11C24, C22.45C24 [×2], D43Q8 [×2], C23.250C24

Smallest permutation representation of C23.250C24
On 64 points
Generators in S64
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 57 49 45)(2 30 50 18)(3 59 51 47)(4 32 52 20)(5 16 64 28)(6 41 61 53)(7 14 62 26)(8 43 63 55)(9 29 21 17)(10 58 22 46)(11 31 23 19)(12 60 24 48)(13 35 25 39)(15 33 27 37)(34 56 38 44)(36 54 40 42)
(1 27 23 41)(2 14 24 56)(3 25 21 43)(4 16 22 54)(5 58 36 20)(6 45 33 31)(7 60 34 18)(8 47 35 29)(9 55 51 13)(10 42 52 28)(11 53 49 15)(12 44 50 26)(17 63 59 39)(19 61 57 37)(30 62 48 38)(32 64 46 40)
(1 3)(2 4)(5 40)(6 37)(7 38)(8 39)(9 11)(10 12)(13 15)(14 16)(17 47)(18 48)(19 45)(20 46)(21 23)(22 24)(25 27)(26 28)(29 59)(30 60)(31 57)(32 58)(33 61)(34 62)(35 63)(36 64)(41 43)(42 44)(49 51)(50 52)(53 55)(54 56)

G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,49,45)(2,30,50,18)(3,59,51,47)(4,32,52,20)(5,16,64,28)(6,41,61,53)(7,14,62,26)(8,43,63,55)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(13,35,25,39)(15,33,27,37)(34,56,38,44)(36,54,40,42), (1,27,23,41)(2,14,24,56)(3,25,21,43)(4,16,22,54)(5,58,36,20)(6,45,33,31)(7,60,34,18)(8,47,35,29)(9,55,51,13)(10,42,52,28)(11,53,49,15)(12,44,50,26)(17,63,59,39)(19,61,57,37)(30,62,48,38)(32,64,46,40), (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,23)(22,24)(25,27)(26,28)(29,59)(30,60)(31,57)(32,58)(33,61)(34,62)(35,63)(36,64)(41,43)(42,44)(49,51)(50,52)(53,55)(54,56)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,49,45)(2,30,50,18)(3,59,51,47)(4,32,52,20)(5,16,64,28)(6,41,61,53)(7,14,62,26)(8,43,63,55)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(13,35,25,39)(15,33,27,37)(34,56,38,44)(36,54,40,42), (1,27,23,41)(2,14,24,56)(3,25,21,43)(4,16,22,54)(5,58,36,20)(6,45,33,31)(7,60,34,18)(8,47,35,29)(9,55,51,13)(10,42,52,28)(11,53,49,15)(12,44,50,26)(17,63,59,39)(19,61,57,37)(30,62,48,38)(32,64,46,40), (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,23)(22,24)(25,27)(26,28)(29,59)(30,60)(31,57)(32,58)(33,61)(34,62)(35,63)(36,64)(41,43)(42,44)(49,51)(50,52)(53,55)(54,56) );

G=PermutationGroup([(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,57,49,45),(2,30,50,18),(3,59,51,47),(4,32,52,20),(5,16,64,28),(6,41,61,53),(7,14,62,26),(8,43,63,55),(9,29,21,17),(10,58,22,46),(11,31,23,19),(12,60,24,48),(13,35,25,39),(15,33,27,37),(34,56,38,44),(36,54,40,42)], [(1,27,23,41),(2,14,24,56),(3,25,21,43),(4,16,22,54),(5,58,36,20),(6,45,33,31),(7,60,34,18),(8,47,35,29),(9,55,51,13),(10,42,52,28),(11,53,49,15),(12,44,50,26),(17,63,59,39),(19,61,57,37),(30,62,48,38),(32,64,46,40)], [(1,3),(2,4),(5,40),(6,37),(7,38),(8,39),(9,11),(10,12),(13,15),(14,16),(17,47),(18,48),(19,45),(20,46),(21,23),(22,24),(25,27),(26,28),(29,59),(30,60),(31,57),(32,58),(33,61),(34,62),(35,63),(36,64),(41,43),(42,44),(49,51),(50,52),(53,55),(54,56)])

50 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4T4U···4AL
order12···222224···44···4
size11···122222···24···4

50 irreducible representations

dim1111111112224
type++++++++-+
imageC1C2C2C2C2C2C2C2C4Q8C4○D4C4○D42+ 1+4
kernelC23.250C24C2×C2.C42C4×C22⋊C4C4×C4⋊C4C23.8Q8C23.63C23C23.67C23C2×C22⋊Q8C22⋊Q8C22⋊C4C2×C4C23C22
# reps11322421164842

Matrix representation of C23.250C24 in GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
400000
040000
004000
000400
000010
000001
,
400000
040000
001000
000100
000010
000001
,
010000
400000
000100
001000
000010
000034
,
100000
010000
003000
000300
000022
000013
,
300000
020000
000100
004000
000020
000002
,
400000
040000
001000
000100
000010
000034

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,1,0,0,0,0,2,3],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,4] >;

C23.250C24 in GAP, Magma, Sage, TeX

C_2^3._{250}C_2^4
% in TeX

G:=Group("C2^3.250C2^4");
// GroupNames label

G:=SmallGroup(128,1100);
// by ID

G=gap.SmallGroup(128,1100);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,680,758,268,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=c,e^2=c*b=b*c,f^2=b*a=a*b,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations

׿
×
𝔽