Copied to
clipboard

G = C23.352C24order 128 = 27

69th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.352C24, C24.274C23, C22.1182- 1+4, C22.1602+ 1+4, C2.20D42, C4⋊C422D4, (C2×D4)⋊14Q8, C2.15(D4×Q8), C42(C22⋊Q8), C23⋊Q89C2, C23.13(C2×Q8), C2.14(D43Q8), C2.23(Q85D4), C23.Q811C2, C23.8Q843C2, C22.78(C22×Q8), (C2×C42).495C22, (C23×C4).356C22, (C22×C4).807C23, C22.232(C22×D4), (C22×D4).512C22, (C22×Q8).107C22, C23.65C2356C2, C24.3C22.34C2, C2.C42.109C22, C2.18(C22.26C24), C2.19(C22.36C24), (C2×C4⋊Q8)⋊9C2, (C4×C4⋊C4)⋊58C2, (C2×C4×D4).50C2, (C2×C4).54(C2×D4), (C2×C22⋊Q8)⋊13C2, (C2×C4).306(C2×Q8), C2.25(C2×C22⋊Q8), (C2×C4).107(C4○D4), (C2×C4⋊C4).234C22, C22.229(C2×C4○D4), (C2×C22⋊C4).130C22, SmallGroup(128,1184)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.352C24
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C23.352C24
C1C23 — C23.352C24
C1C23 — C23.352C24
C1C23 — C23.352C24

Generators and relations for C23.352C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=ba=ab, e2=f2=b, g2=a, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 580 in 310 conjugacy classes, 120 normal (42 characteristic)
C1, C2 [×7], C2 [×4], C4 [×4], C4 [×18], C22 [×7], C22 [×20], C2×C4 [×18], C2×C4 [×38], D4 [×8], Q8 [×8], C23, C23 [×4], C23 [×12], C42 [×6], C22⋊C4 [×18], C4⋊C4 [×8], C4⋊C4 [×18], C22×C4 [×7], C22×C4 [×6], C22×C4 [×10], C2×D4 [×4], C2×D4 [×4], C2×Q8 [×10], C24 [×2], C2.C42 [×2], C2.C42 [×4], C2×C42 [×3], C2×C22⋊C4 [×10], C2×C4⋊C4 [×5], C2×C4⋊C4 [×6], C4×D4 [×4], C22⋊Q8 [×8], C4⋊Q8 [×4], C23×C4 [×2], C22×D4, C22×Q8 [×2], C4×C4⋊C4, C23.8Q8 [×2], C23.65C23 [×2], C24.3C22 [×2], C23⋊Q8 [×2], C23.Q8 [×2], C2×C4×D4, C2×C22⋊Q8 [×2], C2×C4⋊Q8, C23.352C24
Quotients: C1, C2 [×15], C22 [×35], D4 [×8], Q8 [×4], C23 [×15], C2×D4 [×12], C2×Q8 [×6], C4○D4 [×4], C24, C22⋊Q8 [×4], C22×D4 [×2], C22×Q8, C2×C4○D4 [×2], 2+ 1+4, 2- 1+4, C2×C22⋊Q8, C22.26C24, C22.36C24, D42, Q85D4, D4×Q8, D43Q8, C23.352C24

Smallest permutation representation of C23.352C24
On 64 points
Generators in S64
(1 15)(2 16)(3 13)(4 14)(5 43)(6 44)(7 41)(8 42)(9 36)(10 33)(11 34)(12 35)(17 60)(18 57)(19 58)(20 59)(21 56)(22 53)(23 54)(24 55)(25 52)(26 49)(27 50)(28 51)(29 40)(30 37)(31 38)(32 39)(45 62)(46 63)(47 64)(48 61)
(1 13)(2 14)(3 15)(4 16)(5 41)(6 42)(7 43)(8 44)(9 34)(10 35)(11 36)(12 33)(17 58)(18 59)(19 60)(20 57)(21 54)(22 55)(23 56)(24 53)(25 50)(26 51)(27 52)(28 49)(29 38)(30 39)(31 40)(32 37)(45 64)(46 61)(47 62)(48 63)
(1 20)(2 17)(3 18)(4 19)(5 30)(6 31)(7 32)(8 29)(9 22)(10 23)(11 24)(12 21)(13 57)(14 58)(15 59)(16 60)(25 63)(26 64)(27 61)(28 62)(33 54)(34 55)(35 56)(36 53)(37 43)(38 44)(39 41)(40 42)(45 51)(46 52)(47 49)(48 50)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 35 13 10)(2 9 14 34)(3 33 15 12)(4 11 16 36)(5 52 41 27)(6 26 42 51)(7 50 43 25)(8 28 44 49)(17 22 58 55)(18 54 59 21)(19 24 60 53)(20 56 57 23)(29 62 38 47)(30 46 39 61)(31 64 40 45)(32 48 37 63)
(1 42 13 6)(2 7 14 43)(3 44 15 8)(4 5 16 41)(9 48 34 63)(10 64 35 45)(11 46 36 61)(12 62 33 47)(17 32 58 37)(18 38 59 29)(19 30 60 39)(20 40 57 31)(21 28 54 49)(22 50 55 25)(23 26 56 51)(24 52 53 27)
(1 36 15 9)(2 10 16 33)(3 34 13 11)(4 12 14 35)(5 62 43 45)(6 46 44 63)(7 64 41 47)(8 48 42 61)(17 23 60 54)(18 55 57 24)(19 21 58 56)(20 53 59 22)(25 31 52 38)(26 39 49 32)(27 29 50 40)(28 37 51 30)

G:=sub<Sym(64)| (1,15)(2,16)(3,13)(4,14)(5,43)(6,44)(7,41)(8,42)(9,36)(10,33)(11,34)(12,35)(17,60)(18,57)(19,58)(20,59)(21,56)(22,53)(23,54)(24,55)(25,52)(26,49)(27,50)(28,51)(29,40)(30,37)(31,38)(32,39)(45,62)(46,63)(47,64)(48,61), (1,13)(2,14)(3,15)(4,16)(5,41)(6,42)(7,43)(8,44)(9,34)(10,35)(11,36)(12,33)(17,58)(18,59)(19,60)(20,57)(21,54)(22,55)(23,56)(24,53)(25,50)(26,51)(27,52)(28,49)(29,38)(30,39)(31,40)(32,37)(45,64)(46,61)(47,62)(48,63), (1,20)(2,17)(3,18)(4,19)(5,30)(6,31)(7,32)(8,29)(9,22)(10,23)(11,24)(12,21)(13,57)(14,58)(15,59)(16,60)(25,63)(26,64)(27,61)(28,62)(33,54)(34,55)(35,56)(36,53)(37,43)(38,44)(39,41)(40,42)(45,51)(46,52)(47,49)(48,50), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,35,13,10)(2,9,14,34)(3,33,15,12)(4,11,16,36)(5,52,41,27)(6,26,42,51)(7,50,43,25)(8,28,44,49)(17,22,58,55)(18,54,59,21)(19,24,60,53)(20,56,57,23)(29,62,38,47)(30,46,39,61)(31,64,40,45)(32,48,37,63), (1,42,13,6)(2,7,14,43)(3,44,15,8)(4,5,16,41)(9,48,34,63)(10,64,35,45)(11,46,36,61)(12,62,33,47)(17,32,58,37)(18,38,59,29)(19,30,60,39)(20,40,57,31)(21,28,54,49)(22,50,55,25)(23,26,56,51)(24,52,53,27), (1,36,15,9)(2,10,16,33)(3,34,13,11)(4,12,14,35)(5,62,43,45)(6,46,44,63)(7,64,41,47)(8,48,42,61)(17,23,60,54)(18,55,57,24)(19,21,58,56)(20,53,59,22)(25,31,52,38)(26,39,49,32)(27,29,50,40)(28,37,51,30)>;

G:=Group( (1,15)(2,16)(3,13)(4,14)(5,43)(6,44)(7,41)(8,42)(9,36)(10,33)(11,34)(12,35)(17,60)(18,57)(19,58)(20,59)(21,56)(22,53)(23,54)(24,55)(25,52)(26,49)(27,50)(28,51)(29,40)(30,37)(31,38)(32,39)(45,62)(46,63)(47,64)(48,61), (1,13)(2,14)(3,15)(4,16)(5,41)(6,42)(7,43)(8,44)(9,34)(10,35)(11,36)(12,33)(17,58)(18,59)(19,60)(20,57)(21,54)(22,55)(23,56)(24,53)(25,50)(26,51)(27,52)(28,49)(29,38)(30,39)(31,40)(32,37)(45,64)(46,61)(47,62)(48,63), (1,20)(2,17)(3,18)(4,19)(5,30)(6,31)(7,32)(8,29)(9,22)(10,23)(11,24)(12,21)(13,57)(14,58)(15,59)(16,60)(25,63)(26,64)(27,61)(28,62)(33,54)(34,55)(35,56)(36,53)(37,43)(38,44)(39,41)(40,42)(45,51)(46,52)(47,49)(48,50), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,35,13,10)(2,9,14,34)(3,33,15,12)(4,11,16,36)(5,52,41,27)(6,26,42,51)(7,50,43,25)(8,28,44,49)(17,22,58,55)(18,54,59,21)(19,24,60,53)(20,56,57,23)(29,62,38,47)(30,46,39,61)(31,64,40,45)(32,48,37,63), (1,42,13,6)(2,7,14,43)(3,44,15,8)(4,5,16,41)(9,48,34,63)(10,64,35,45)(11,46,36,61)(12,62,33,47)(17,32,58,37)(18,38,59,29)(19,30,60,39)(20,40,57,31)(21,28,54,49)(22,50,55,25)(23,26,56,51)(24,52,53,27), (1,36,15,9)(2,10,16,33)(3,34,13,11)(4,12,14,35)(5,62,43,45)(6,46,44,63)(7,64,41,47)(8,48,42,61)(17,23,60,54)(18,55,57,24)(19,21,58,56)(20,53,59,22)(25,31,52,38)(26,39,49,32)(27,29,50,40)(28,37,51,30) );

G=PermutationGroup([(1,15),(2,16),(3,13),(4,14),(5,43),(6,44),(7,41),(8,42),(9,36),(10,33),(11,34),(12,35),(17,60),(18,57),(19,58),(20,59),(21,56),(22,53),(23,54),(24,55),(25,52),(26,49),(27,50),(28,51),(29,40),(30,37),(31,38),(32,39),(45,62),(46,63),(47,64),(48,61)], [(1,13),(2,14),(3,15),(4,16),(5,41),(6,42),(7,43),(8,44),(9,34),(10,35),(11,36),(12,33),(17,58),(18,59),(19,60),(20,57),(21,54),(22,55),(23,56),(24,53),(25,50),(26,51),(27,52),(28,49),(29,38),(30,39),(31,40),(32,37),(45,64),(46,61),(47,62),(48,63)], [(1,20),(2,17),(3,18),(4,19),(5,30),(6,31),(7,32),(8,29),(9,22),(10,23),(11,24),(12,21),(13,57),(14,58),(15,59),(16,60),(25,63),(26,64),(27,61),(28,62),(33,54),(34,55),(35,56),(36,53),(37,43),(38,44),(39,41),(40,42),(45,51),(46,52),(47,49),(48,50)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,35,13,10),(2,9,14,34),(3,33,15,12),(4,11,16,36),(5,52,41,27),(6,26,42,51),(7,50,43,25),(8,28,44,49),(17,22,58,55),(18,54,59,21),(19,24,60,53),(20,56,57,23),(29,62,38,47),(30,46,39,61),(31,64,40,45),(32,48,37,63)], [(1,42,13,6),(2,7,14,43),(3,44,15,8),(4,5,16,41),(9,48,34,63),(10,64,35,45),(11,46,36,61),(12,62,33,47),(17,32,58,37),(18,38,59,29),(19,30,60,39),(20,40,57,31),(21,28,54,49),(22,50,55,25),(23,26,56,51),(24,52,53,27)], [(1,36,15,9),(2,10,16,33),(3,34,13,11),(4,12,14,35),(5,62,43,45),(6,46,44,63),(7,64,41,47),(8,48,42,61),(17,23,60,54),(18,55,57,24),(19,21,58,56),(20,53,59,22),(25,31,52,38),(26,39,49,32),(27,29,50,40),(28,37,51,30)])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4V4W4X4Y4Z
order12···222224···44···44444
size11···144442···24···48888

38 irreducible representations

dim111111111122244
type+++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2D4Q8C4○D42+ 1+42- 1+4
kernelC23.352C24C4×C4⋊C4C23.8Q8C23.65C23C24.3C22C23⋊Q8C23.Q8C2×C4×D4C2×C22⋊Q8C2×C4⋊Q8C4⋊C4C2×D4C2×C4C22C22
# reps112222212184811

Matrix representation of C23.352C24 in GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
400000
040000
004000
000400
000040
000004
,
400000
040000
001000
000100
000010
000001
,
440000
210000
003000
000200
000040
000041
,
440000
210000
002000
000200
000013
000014
,
300000
420000
000100
004000
000013
000014
,
400000
040000
001000
000100
000013
000014

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,2,0,0,0,0,4,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,4,4,0,0,0,0,0,1],[4,2,0,0,0,0,4,1,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,1,0,0,0,0,3,4],[3,4,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,3,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,3,4] >;

C23.352C24 in GAP, Magma, Sage, TeX

C_2^3._{352}C_2^4
% in TeX

G:=Group("C2^3.352C2^4");
// GroupNames label

G:=SmallGroup(128,1184);
// by ID

G=gap.SmallGroup(128,1184);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,232,758,723,184,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=b*a=a*b,e^2=f^2=b,g^2=a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽