Copied to
clipboard

G = C24.227C23order 128 = 27

67th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.227C23, C23.260C24, C22.912+ 1+4, C22.662- 1+4, C22⋊Q822C4, C23.95(C22×C4), (C22×C4).488C23, C22.151(C23×C4), (C23×C4).315C22, (C2×C42).448C22, C23.7Q8.33C2, (C22×Q8).94C22, C23.34D4.12C2, C24.C22.9C2, C23.67C2325C2, C23.65C2331C2, C23.63C2326C2, C2.40(C22.11C24), C2.C42.68C22, C2.3(C22.56C24), C2.2(C22.57C24), C2.20(C23.32C23), C2.40(C23.33C23), C4⋊C4.111(C2×C4), C22⋊C4.13(C2×C4), (C2×C4).57(C22×C4), (C2×Q8).113(C2×C4), (C2×C22⋊Q8).21C2, (C2×C4⋊C4).196C22, (C22×C4).317(C2×C4), (C2×C22⋊C4).42C22, SmallGroup(128,1110)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C24.227C23
C1C2C22C23C22×C4C23×C4C2×C22⋊Q8 — C24.227C23
C1C22 — C24.227C23
C1C23 — C24.227C23
C1C23 — C24.227C23

Generators and relations for C24.227C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=c, e2=g2=a, ab=ba, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, gdg-1=abd, fef=abe, fg=gf >

Subgroups: 412 in 232 conjugacy classes, 132 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C2 [×2], C4 [×20], C22 [×3], C22 [×4], C22 [×10], C2×C4 [×12], C2×C4 [×40], Q8 [×4], C23, C23 [×2], C23 [×6], C42 [×4], C22⋊C4 [×8], C22⋊C4 [×4], C4⋊C4 [×12], C4⋊C4 [×6], C22×C4 [×2], C22×C4 [×16], C22×C4 [×2], C2×Q8 [×4], C2×Q8 [×2], C24, C2.C42 [×2], C2.C42 [×12], C2×C42 [×4], C2×C22⋊C4 [×2], C2×C22⋊C4 [×4], C2×C4⋊C4, C2×C4⋊C4 [×8], C22⋊Q8 [×8], C23×C4, C22×Q8, C23.7Q8, C23.34D4, C23.63C23 [×4], C24.C22 [×4], C23.65C23 [×2], C23.67C23 [×2], C2×C22⋊Q8, C24.227C23
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C24, C23×C4, 2+ 1+4 [×3], 2- 1+4 [×3], C22.11C24, C23.32C23, C23.33C23, C22.56C24 [×2], C22.57C24 [×2], C24.227C23

Smallest permutation representation of C24.227C23
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 19 11 47)(2 48 12 20)(3 17 9 45)(4 46 10 18)(5 42 38 14)(6 15 39 43)(7 44 40 16)(8 13 37 41)(21 57 49 29)(22 30 50 58)(23 59 51 31)(24 32 52 60)(25 61 53 35)(26 36 54 62)(27 63 55 33)(28 34 56 64)
(2 52)(4 50)(5 38)(6 63)(7 40)(8 61)(10 22)(12 24)(14 26)(16 28)(17 57)(18 46)(19 59)(20 48)(29 45)(30 58)(31 47)(32 60)(33 39)(34 64)(35 37)(36 62)(42 54)(44 56)
(1 15 11 43)(2 56 12 28)(3 13 9 41)(4 54 10 26)(5 30 38 58)(6 47 39 19)(7 32 40 60)(8 45 37 17)(14 50 42 22)(16 52 44 24)(18 62 46 36)(20 64 48 34)(21 53 49 25)(23 55 51 27)(29 35 57 61)(31 33 59 63)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,47)(2,48,12,20)(3,17,9,45)(4,46,10,18)(5,42,38,14)(6,15,39,43)(7,44,40,16)(8,13,37,41)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (2,52)(4,50)(5,38)(6,63)(7,40)(8,61)(10,22)(12,24)(14,26)(16,28)(17,57)(18,46)(19,59)(20,48)(29,45)(30,58)(31,47)(32,60)(33,39)(34,64)(35,37)(36,62)(42,54)(44,56), (1,15,11,43)(2,56,12,28)(3,13,9,41)(4,54,10,26)(5,30,38,58)(6,47,39,19)(7,32,40,60)(8,45,37,17)(14,50,42,22)(16,52,44,24)(18,62,46,36)(20,64,48,34)(21,53,49,25)(23,55,51,27)(29,35,57,61)(31,33,59,63)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,47)(2,48,12,20)(3,17,9,45)(4,46,10,18)(5,42,38,14)(6,15,39,43)(7,44,40,16)(8,13,37,41)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (2,52)(4,50)(5,38)(6,63)(7,40)(8,61)(10,22)(12,24)(14,26)(16,28)(17,57)(18,46)(19,59)(20,48)(29,45)(30,58)(31,47)(32,60)(33,39)(34,64)(35,37)(36,62)(42,54)(44,56), (1,15,11,43)(2,56,12,28)(3,13,9,41)(4,54,10,26)(5,30,38,58)(6,47,39,19)(7,32,40,60)(8,45,37,17)(14,50,42,22)(16,52,44,24)(18,62,46,36)(20,64,48,34)(21,53,49,25)(23,55,51,27)(29,35,57,61)(31,33,59,63) );

G=PermutationGroup([(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,19,11,47),(2,48,12,20),(3,17,9,45),(4,46,10,18),(5,42,38,14),(6,15,39,43),(7,44,40,16),(8,13,37,41),(21,57,49,29),(22,30,50,58),(23,59,51,31),(24,32,52,60),(25,61,53,35),(26,36,54,62),(27,63,55,33),(28,34,56,64)], [(2,52),(4,50),(5,38),(6,63),(7,40),(8,61),(10,22),(12,24),(14,26),(16,28),(17,57),(18,46),(19,59),(20,48),(29,45),(30,58),(31,47),(32,60),(33,39),(34,64),(35,37),(36,62),(42,54),(44,56)], [(1,15,11,43),(2,56,12,28),(3,13,9,41),(4,54,10,26),(5,30,38,58),(6,47,39,19),(7,32,40,60),(8,45,37,17),(14,50,42,22),(16,52,44,24),(18,62,46,36),(20,64,48,34),(21,53,49,25),(23,55,51,27),(29,35,57,61),(31,33,59,63)])

38 conjugacy classes

class 1 2A···2G2H2I4A···4AB
order12···2224···4
size11···1444···4

38 irreducible representations

dim11111111144
type+++++++++-
imageC1C2C2C2C2C2C2C2C42+ 1+42- 1+4
kernelC24.227C23C23.7Q8C23.34D4C23.63C23C24.C22C23.65C23C23.67C23C2×C22⋊Q8C22⋊Q8C22C22
# reps111442211633

Matrix representation of C24.227C23 in GL9(𝔽5)

100000000
040000000
004000000
000400000
000040000
000004000
000000400
000000040
000000004
,
100000000
010000000
001000000
000100000
000010000
000004000
000000400
000000040
000000004
,
400000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001
,
200000000
004000000
040000000
000010000
000100000
000002030
000000303
000004030
000000402
,
100000000
000100000
000010000
040000000
004000000
000000100
000004000
000000004
000000010
,
400000000
010000000
001000000
000400000
000040000
000001000
000000100
000002040
000000304
,
100000000
001000000
040000000
000040000
000100000
000003000
000000200
000000030
000000002

G:=sub<GL(9,GF(5))| [1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,4,0,0,0,0,0,0,0,3,0,4,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,3,0,2],[1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0],[4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,2] >;

C24.227C23 in GAP, Magma, Sage, TeX

C_2^4._{227}C_2^3
% in TeX

G:=Group("C2^4.227C2^3");
// GroupNames label

G:=SmallGroup(128,1110);
// by ID

G=gap.SmallGroup(128,1110);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,555,1571,346,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c,e^2=g^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*e*f=a*b*e,f*g=g*f>;
// generators/relations

׿
×
𝔽