Copied to
clipboard

G = C24.252C23order 128 = 27

92nd non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.252C23, C23.317C24, C22.942- 1+4, C22.1312+ 1+4, C4⋊C436D4, C2.7(D4×Q8), (C2×D4)⋊11Q8, C23.9(C2×Q8), C2.9(D43Q8), (C22×C4).375D4, C23.367(C2×D4), C222(C22⋊Q8), C2.20(D45D4), C23.Q84C2, C4.164(C4⋊D4), (C22×C4).52C23, C23.7Q837C2, C23.301(C4○D4), C22.64(C22×Q8), (C23×C4).335C22, (C2×C42).466C22, C22.197(C22×D4), (C22×Q8).98C22, C23.81C234C2, C23.23D4.16C2, (C22×D4).504C22, C23.65C2337C2, C23.67C2330C2, C2.C42.81C22, C2.8(C22.31C24), C2.14(C22.46C24), (C2×C4×D4).45C2, (C2×C22⋊Q8)⋊5C2, (C2×C4).25(C2×Q8), (C22×C4⋊C4)⋊19C2, (C2×C4).308(C2×D4), C2.21(C2×C4⋊D4), C2.15(C2×C22⋊Q8), (C2×C4).806(C4○D4), (C2×C4⋊C4).207C22, C22.196(C2×C4○D4), (C2×C22⋊C4).112C22, SmallGroup(128,1149)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.252C23
C1C2C22C23C22×C4C23×C4C2×C4×D4 — C24.252C23
C1C23 — C24.252C23
C1C23 — C24.252C23
C1C23 — C24.252C23

Generators and relations for C24.252C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=cb=bc, f2=g2=b, ab=ba, eae-1=ac=ca, faf-1=ad=da, ag=ga, bd=db, fef-1=geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >

Subgroups: 596 in 324 conjugacy classes, 124 normal (42 characteristic)
C1, C2 [×7], C2 [×6], C4 [×4], C4 [×16], C22 [×7], C22 [×4], C22 [×22], C2×C4 [×14], C2×C4 [×52], D4 [×8], Q8 [×4], C23, C23 [×8], C23 [×10], C42 [×2], C22⋊C4 [×14], C4⋊C4 [×4], C4⋊C4 [×20], C22×C4 [×5], C22×C4 [×12], C22×C4 [×20], C2×D4 [×4], C2×D4 [×4], C2×Q8 [×6], C24 [×2], C2.C42 [×8], C2×C42, C2×C22⋊C4 [×2], C2×C22⋊C4 [×6], C2×C4⋊C4 [×4], C2×C4⋊C4 [×8], C2×C4⋊C4 [×4], C4×D4 [×4], C22⋊Q8 [×8], C23×C4 [×2], C23×C4 [×2], C22×D4, C22×Q8, C23.7Q8, C23.7Q8 [×2], C23.23D4 [×2], C23.65C23, C23.67C23, C23.Q8 [×2], C23.81C23 [×2], C22×C4⋊C4, C2×C4×D4, C2×C22⋊Q8 [×2], C24.252C23
Quotients: C1, C2 [×15], C22 [×35], D4 [×8], Q8 [×4], C23 [×15], C2×D4 [×12], C2×Q8 [×6], C4○D4 [×4], C24, C4⋊D4 [×4], C22⋊Q8 [×4], C22×D4 [×2], C22×Q8, C2×C4○D4 [×2], 2+ 1+4, 2- 1+4, C2×C4⋊D4, C2×C22⋊Q8, C22.31C24, D45D4, D4×Q8, C22.46C24, D43Q8, C24.252C23

Smallest permutation representation of C24.252C23
On 64 points
Generators in S64
(2 12)(4 10)(5 42)(6 23)(7 44)(8 21)(14 48)(16 46)(17 63)(18 35)(19 61)(20 33)(22 39)(24 37)(26 54)(28 56)(30 58)(32 60)(34 51)(36 49)(38 41)(40 43)(50 62)(52 64)
(1 9)(2 10)(3 11)(4 12)(5 37)(6 38)(7 39)(8 40)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 43)(22 44)(23 41)(24 42)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 64)(34 61)(35 62)(36 63)
(1 11)(2 12)(3 9)(4 10)(5 39)(6 40)(7 37)(8 38)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(21 41)(22 42)(23 43)(24 44)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 62)(34 63)(35 64)(36 61)
(1 25)(2 26)(3 27)(4 28)(5 22)(6 23)(7 24)(8 21)(9 55)(10 56)(11 53)(12 54)(13 59)(14 60)(15 57)(16 58)(17 63)(18 64)(19 61)(20 62)(29 45)(30 46)(31 47)(32 48)(33 50)(34 51)(35 52)(36 49)(37 44)(38 41)(39 42)(40 43)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 9 49)(2 50 10 18)(3 19 11 51)(4 52 12 20)(5 30 37 60)(6 57 38 31)(7 32 39 58)(8 59 40 29)(13 43 45 21)(14 22 46 44)(15 41 47 23)(16 24 48 42)(25 63 55 36)(26 33 56 64)(27 61 53 34)(28 35 54 62)
(1 15 9 47)(2 48 10 16)(3 13 11 45)(4 46 12 14)(5 35 37 62)(6 63 38 36)(7 33 39 64)(8 61 40 34)(17 41 49 23)(18 24 50 42)(19 43 51 21)(20 22 52 44)(25 57 55 31)(26 32 56 58)(27 59 53 29)(28 30 54 60)

G:=sub<Sym(64)| (2,12)(4,10)(5,42)(6,23)(7,44)(8,21)(14,48)(16,46)(17,63)(18,35)(19,61)(20,33)(22,39)(24,37)(26,54)(28,56)(30,58)(32,60)(34,51)(36,49)(38,41)(40,43)(50,62)(52,64), (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,49)(2,50,10,18)(3,19,11,51)(4,52,12,20)(5,30,37,60)(6,57,38,31)(7,32,39,58)(8,59,40,29)(13,43,45,21)(14,22,46,44)(15,41,47,23)(16,24,48,42)(25,63,55,36)(26,33,56,64)(27,61,53,34)(28,35,54,62), (1,15,9,47)(2,48,10,16)(3,13,11,45)(4,46,12,14)(5,35,37,62)(6,63,38,36)(7,33,39,64)(8,61,40,34)(17,41,49,23)(18,24,50,42)(19,43,51,21)(20,22,52,44)(25,57,55,31)(26,32,56,58)(27,59,53,29)(28,30,54,60)>;

G:=Group( (2,12)(4,10)(5,42)(6,23)(7,44)(8,21)(14,48)(16,46)(17,63)(18,35)(19,61)(20,33)(22,39)(24,37)(26,54)(28,56)(30,58)(32,60)(34,51)(36,49)(38,41)(40,43)(50,62)(52,64), (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,49)(2,50,10,18)(3,19,11,51)(4,52,12,20)(5,30,37,60)(6,57,38,31)(7,32,39,58)(8,59,40,29)(13,43,45,21)(14,22,46,44)(15,41,47,23)(16,24,48,42)(25,63,55,36)(26,33,56,64)(27,61,53,34)(28,35,54,62), (1,15,9,47)(2,48,10,16)(3,13,11,45)(4,46,12,14)(5,35,37,62)(6,63,38,36)(7,33,39,64)(8,61,40,34)(17,41,49,23)(18,24,50,42)(19,43,51,21)(20,22,52,44)(25,57,55,31)(26,32,56,58)(27,59,53,29)(28,30,54,60) );

G=PermutationGroup([(2,12),(4,10),(5,42),(6,23),(7,44),(8,21),(14,48),(16,46),(17,63),(18,35),(19,61),(20,33),(22,39),(24,37),(26,54),(28,56),(30,58),(32,60),(34,51),(36,49),(38,41),(40,43),(50,62),(52,64)], [(1,9),(2,10),(3,11),(4,12),(5,37),(6,38),(7,39),(8,40),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,43),(22,44),(23,41),(24,42),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,64),(34,61),(35,62),(36,63)], [(1,11),(2,12),(3,9),(4,10),(5,39),(6,40),(7,37),(8,38),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(21,41),(22,42),(23,43),(24,44),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,62),(34,63),(35,64),(36,61)], [(1,25),(2,26),(3,27),(4,28),(5,22),(6,23),(7,24),(8,21),(9,55),(10,56),(11,53),(12,54),(13,59),(14,60),(15,57),(16,58),(17,63),(18,64),(19,61),(20,62),(29,45),(30,46),(31,47),(32,48),(33,50),(34,51),(35,52),(36,49),(37,44),(38,41),(39,42),(40,43)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,9,49),(2,50,10,18),(3,19,11,51),(4,52,12,20),(5,30,37,60),(6,57,38,31),(7,32,39,58),(8,59,40,29),(13,43,45,21),(14,22,46,44),(15,41,47,23),(16,24,48,42),(25,63,55,36),(26,33,56,64),(27,61,53,34),(28,35,54,62)], [(1,15,9,47),(2,48,10,16),(3,13,11,45),(4,46,12,14),(5,35,37,62),(6,63,38,36),(7,33,39,64),(8,61,40,34),(17,41,49,23),(18,24,50,42),(19,43,51,21),(20,22,52,44),(25,57,55,31),(26,32,56,58),(27,59,53,29),(28,30,54,60)])

38 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E···4T4U4V4W4X
order12···222222244444···44444
size11···122224422224···48888

38 irreducible representations

dim11111111112222244
type++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2D4D4Q8C4○D4C4○D42+ 1+42- 1+4
kernelC24.252C23C23.7Q8C23.23D4C23.65C23C23.67C23C23.Q8C23.81C23C22×C4⋊C4C2×C4×D4C2×C22⋊Q8C4⋊C4C22×C4C2×D4C2×C4C23C22C22
# reps13211221124444411

Matrix representation of C24.252C23 in GL6(𝔽5)

100000
010000
001000
003400
000010
000004
,
400000
040000
001000
000100
000040
000004
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
240000
030000
001000
000100
000001
000010
,
430000
110000
003300
004200
000030
000002
,
120000
440000
004000
000400
000020
000003

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,4,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,3,4,0,0,0,0,3,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[1,4,0,0,0,0,2,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3] >;

C24.252C23 in GAP, Magma, Sage, TeX

C_2^4._{252}C_2^3
% in TeX

G:=Group("C2^4.252C2^3");
// GroupNames label

G:=SmallGroup(128,1149);
// by ID

G=gap.SmallGroup(128,1149);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,120,758,723,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=c*b=b*c,f^2=g^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,f*a*f^-1=a*d=d*a,a*g=g*a,b*d=d*b,f*e*f^-1=g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations

׿
×
𝔽