Copied to
clipboard

G = C2×C23.11D4order 128 = 27

Direct product of C2 and C23.11D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C23.11D4, C24.93D4, C25.30C22, C23.290C24, C24.649C23, C23.144(C2×D4), (C22×C4).366D4, C23.369(C4○D4), (C23×C4).321C22, (C22×C4).495C23, C22.173(C22×D4), C22.163(C4⋊D4), C2.C4254C22, C22.78(C4.4D4), C22.33(C422C2), C22.102(C22.D4), (C22×C4⋊C4)⋊14C2, (C2×C4).291(C2×D4), C2.10(C2×C4⋊D4), C2.8(C2×C4.4D4), (C2×C4⋊C4)⋊107C22, C2.6(C2×C422C2), C22.170(C2×C4○D4), C2.8(C2×C22.D4), (C2×C2.C42)⋊26C2, (C22×C22⋊C4).20C2, (C2×C22⋊C4).485C22, SmallGroup(128,1122)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C2×C23.11D4
C1C2C22C23C24C23×C4C22×C22⋊C4 — C2×C23.11D4
C1C23 — C2×C23.11D4
C1C24 — C2×C23.11D4
C1C23 — C2×C23.11D4

Generators and relations for C2×C23.11D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 820 in 410 conjugacy classes, 148 normal (16 characteristic)
C1, C2 [×3], C2 [×12], C2 [×4], C4 [×14], C22 [×3], C22 [×32], C22 [×36], C2×C4 [×4], C2×C4 [×62], C23, C23 [×18], C23 [×52], C22⋊C4 [×24], C4⋊C4 [×8], C22×C4 [×16], C22×C4 [×34], C24, C24 [×6], C24 [×12], C2.C42 [×12], C2×C22⋊C4 [×12], C2×C22⋊C4 [×12], C2×C4⋊C4 [×4], C2×C4⋊C4 [×4], C23×C4 [×2], C23×C4 [×4], C25, C2×C2.C42, C2×C2.C42 [×2], C23.11D4 [×8], C22×C22⋊C4, C22×C22⋊C4 [×2], C22×C4⋊C4, C2×C23.11D4
Quotients: C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×10], C24, C4⋊D4 [×4], C22.D4 [×12], C4.4D4 [×4], C422C2 [×8], C22×D4 [×2], C2×C4○D4 [×5], C23.11D4 [×8], C2×C4⋊D4, C2×C22.D4 [×3], C2×C4.4D4, C2×C422C2 [×2], C2×C23.11D4

Smallest permutation representation of C2×C23.11D4
On 64 points
Generators in S64
(1 29)(2 30)(3 31)(4 32)(5 23)(6 24)(7 21)(8 22)(9 59)(10 60)(11 57)(12 58)(13 19)(14 20)(15 17)(16 18)(25 42)(26 43)(27 44)(28 41)(33 56)(34 53)(35 54)(36 55)(37 63)(38 64)(39 61)(40 62)(45 51)(46 52)(47 49)(48 50)
(1 3)(2 46)(4 48)(5 63)(6 43)(7 61)(8 41)(9 42)(10 64)(11 44)(12 62)(13 15)(14 35)(16 33)(17 19)(18 56)(20 54)(21 39)(22 28)(23 37)(24 26)(25 59)(27 57)(29 31)(30 52)(32 50)(34 36)(38 60)(40 58)(45 47)(49 51)(53 55)
(1 47)(2 48)(3 45)(4 46)(5 9)(6 10)(7 11)(8 12)(13 36)(14 33)(15 34)(16 35)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 37)(26 38)(27 39)(28 40)(29 49)(30 50)(31 51)(32 52)(41 62)(42 63)(43 64)(44 61)
(1 55)(2 56)(3 53)(4 54)(5 61)(6 62)(7 63)(8 64)(9 44)(10 41)(11 42)(12 43)(13 49)(14 50)(15 51)(16 52)(17 45)(18 46)(19 47)(20 48)(21 37)(22 38)(23 39)(24 40)(25 57)(26 58)(27 59)(28 60)(29 36)(30 33)(31 34)(32 35)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 38 47 26)(2 37 48 25)(3 40 45 28)(4 39 46 27)(5 16 9 35)(6 15 10 34)(7 14 11 33)(8 13 12 36)(17 60 53 24)(18 59 54 23)(19 58 55 22)(20 57 56 21)(29 64 49 43)(30 63 50 42)(31 62 51 41)(32 61 52 44)

G:=sub<Sym(64)| (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,59)(10,60)(11,57)(12,58)(13,19)(14,20)(15,17)(16,18)(25,42)(26,43)(27,44)(28,41)(33,56)(34,53)(35,54)(36,55)(37,63)(38,64)(39,61)(40,62)(45,51)(46,52)(47,49)(48,50), (1,3)(2,46)(4,48)(5,63)(6,43)(7,61)(8,41)(9,42)(10,64)(11,44)(12,62)(13,15)(14,35)(16,33)(17,19)(18,56)(20,54)(21,39)(22,28)(23,37)(24,26)(25,59)(27,57)(29,31)(30,52)(32,50)(34,36)(38,60)(40,58)(45,47)(49,51)(53,55), (1,47)(2,48)(3,45)(4,46)(5,9)(6,10)(7,11)(8,12)(13,36)(14,33)(15,34)(16,35)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,37)(26,38)(27,39)(28,40)(29,49)(30,50)(31,51)(32,52)(41,62)(42,63)(43,64)(44,61), (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,44)(10,41)(11,42)(12,43)(13,49)(14,50)(15,51)(16,52)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,57)(26,58)(27,59)(28,60)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,38,47,26)(2,37,48,25)(3,40,45,28)(4,39,46,27)(5,16,9,35)(6,15,10,34)(7,14,11,33)(8,13,12,36)(17,60,53,24)(18,59,54,23)(19,58,55,22)(20,57,56,21)(29,64,49,43)(30,63,50,42)(31,62,51,41)(32,61,52,44)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,59)(10,60)(11,57)(12,58)(13,19)(14,20)(15,17)(16,18)(25,42)(26,43)(27,44)(28,41)(33,56)(34,53)(35,54)(36,55)(37,63)(38,64)(39,61)(40,62)(45,51)(46,52)(47,49)(48,50), (1,3)(2,46)(4,48)(5,63)(6,43)(7,61)(8,41)(9,42)(10,64)(11,44)(12,62)(13,15)(14,35)(16,33)(17,19)(18,56)(20,54)(21,39)(22,28)(23,37)(24,26)(25,59)(27,57)(29,31)(30,52)(32,50)(34,36)(38,60)(40,58)(45,47)(49,51)(53,55), (1,47)(2,48)(3,45)(4,46)(5,9)(6,10)(7,11)(8,12)(13,36)(14,33)(15,34)(16,35)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,37)(26,38)(27,39)(28,40)(29,49)(30,50)(31,51)(32,52)(41,62)(42,63)(43,64)(44,61), (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,44)(10,41)(11,42)(12,43)(13,49)(14,50)(15,51)(16,52)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,57)(26,58)(27,59)(28,60)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,38,47,26)(2,37,48,25)(3,40,45,28)(4,39,46,27)(5,16,9,35)(6,15,10,34)(7,14,11,33)(8,13,12,36)(17,60,53,24)(18,59,54,23)(19,58,55,22)(20,57,56,21)(29,64,49,43)(30,63,50,42)(31,62,51,41)(32,61,52,44) );

G=PermutationGroup([(1,29),(2,30),(3,31),(4,32),(5,23),(6,24),(7,21),(8,22),(9,59),(10,60),(11,57),(12,58),(13,19),(14,20),(15,17),(16,18),(25,42),(26,43),(27,44),(28,41),(33,56),(34,53),(35,54),(36,55),(37,63),(38,64),(39,61),(40,62),(45,51),(46,52),(47,49),(48,50)], [(1,3),(2,46),(4,48),(5,63),(6,43),(7,61),(8,41),(9,42),(10,64),(11,44),(12,62),(13,15),(14,35),(16,33),(17,19),(18,56),(20,54),(21,39),(22,28),(23,37),(24,26),(25,59),(27,57),(29,31),(30,52),(32,50),(34,36),(38,60),(40,58),(45,47),(49,51),(53,55)], [(1,47),(2,48),(3,45),(4,46),(5,9),(6,10),(7,11),(8,12),(13,36),(14,33),(15,34),(16,35),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,37),(26,38),(27,39),(28,40),(29,49),(30,50),(31,51),(32,52),(41,62),(42,63),(43,64),(44,61)], [(1,55),(2,56),(3,53),(4,54),(5,61),(6,62),(7,63),(8,64),(9,44),(10,41),(11,42),(12,43),(13,49),(14,50),(15,51),(16,52),(17,45),(18,46),(19,47),(20,48),(21,37),(22,38),(23,39),(24,40),(25,57),(26,58),(27,59),(28,60),(29,36),(30,33),(31,34),(32,35)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,38,47,26),(2,37,48,25),(3,40,45,28),(4,39,46,27),(5,16,9,35),(6,15,10,34),(7,14,11,33),(8,13,12,36),(17,60,53,24),(18,59,54,23),(19,58,55,22),(20,57,56,21),(29,64,49,43),(30,63,50,42),(31,62,51,41),(32,61,52,44)])

44 conjugacy classes

class 1 2A···2O2P2Q2R2S4A···4X
order12···222224···4
size11···144444···4

44 irreducible representations

dim11111222
type+++++++
imageC1C2C2C2C2D4D4C4○D4
kernelC2×C23.11D4C2×C2.C42C23.11D4C22×C22⋊C4C22×C4⋊C4C22×C4C24C23
# reps138314420

Matrix representation of C2×C23.11D4 in GL7(𝔽5)

4000000
0400000
0040000
0004000
0000400
0000040
0000004
,
4000000
0130000
0040000
0001000
0000400
0000040
0000001
,
1000000
0400000
0040000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0004000
0000400
0000040
0000004
,
1000000
0340000
0320000
0004000
0000400
0000030
0000002
,
4000000
0420000
0410000
0000400
0004000
0000003
0000020

G:=sub<GL(7,GF(5))| [4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,4,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,0,4,4,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,3,0] >;

C2×C23.11D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{11}D_4
% in TeX

G:=Group("C2xC2^3.11D4");
// GroupNames label

G:=SmallGroup(128,1122);
// by ID

G=gap.SmallGroup(128,1122);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,100]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽