Copied to
clipboard

G = C2×C23.34D4order 128 = 27

Direct product of C2 and C23.34D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C23.34D4, C24.164D4, C25.84C22, C23.161C24, C24.640C23, (C23×C4)⋊15C4, (C24×C4).5C2, C24.121(C2×C4), C23.821(C2×D4), C22.52(C23×C4), C22.61(C22×D4), C23.354(C4○D4), (C22×C4).439C23, C23.206(C22×C4), (C23×C4).642C22, C23.205(C22⋊C4), C2.C4249C22, C22.64(C42⋊C2), C22.96(C22.D4), (C22×C4)⋊50(C2×C4), C2.7(C2×C42⋊C2), C22.54(C2×C4○D4), C2.6(C22×C22⋊C4), (C2×C2.C42)⋊7C2, (C2×C4).484(C22×C4), C22.72(C2×C22⋊C4), C2.1(C2×C22.D4), (C22×C22⋊C4).10C2, (C2×C22⋊C4).410C22, SmallGroup(128,1011)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C23.34D4
C1C2C22C23C24C23×C4C24×C4 — C2×C23.34D4
C1C22 — C2×C23.34D4
C1C24 — C2×C23.34D4
C1C23 — C2×C23.34D4

Generators and relations for C2×C23.34D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=fbf-1=bc=cb, bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=de-1 >

Subgroups: 972 in 572 conjugacy classes, 220 normal (8 characteristic)
C1, C2, C2 [×14], C2 [×8], C4 [×16], C22, C22 [×42], C22 [×56], C2×C4 [×8], C2×C4 [×96], C23, C23 [×42], C23 [×56], C22⋊C4 [×16], C22×C4 [×36], C22×C4 [×80], C24, C24 [×14], C24 [×8], C2.C42 [×16], C2×C22⋊C4 [×8], C2×C22⋊C4 [×8], C23×C4 [×18], C23×C4 [×8], C25, C2×C2.C42 [×4], C23.34D4 [×8], C22×C22⋊C4 [×2], C24×C4, C2×C23.34D4
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×8], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C4○D4 [×8], C24, C2×C22⋊C4 [×12], C42⋊C2 [×8], C22.D4 [×16], C23×C4, C22×D4 [×2], C2×C4○D4 [×4], C23.34D4 [×8], C22×C22⋊C4, C2×C42⋊C2 [×2], C2×C22.D4 [×4], C2×C23.34D4

Smallest permutation representation of C2×C23.34D4
On 64 points
Generators in S64
(1 29)(2 30)(3 31)(4 32)(5 63)(6 64)(7 61)(8 62)(9 17)(10 18)(11 19)(12 20)(13 60)(14 57)(15 58)(16 59)(21 47)(22 48)(23 45)(24 46)(25 51)(26 52)(27 49)(28 50)(33 56)(34 53)(35 54)(36 55)(37 41)(38 42)(39 43)(40 44)
(2 28)(4 26)(6 38)(8 40)(10 35)(12 33)(13 46)(15 48)(18 54)(20 56)(22 58)(24 60)(30 50)(32 52)(42 64)(44 62)
(1 27)(2 28)(3 25)(4 26)(5 37)(6 38)(7 39)(8 40)(9 34)(10 35)(11 36)(12 33)(13 46)(14 47)(15 48)(16 45)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(29 49)(30 50)(31 51)(32 52)(41 63)(42 64)(43 61)(44 62)
(1 53)(2 54)(3 55)(4 56)(5 23)(6 24)(7 21)(8 22)(9 49)(10 50)(11 51)(12 52)(13 42)(14 43)(15 44)(16 41)(17 27)(18 28)(19 25)(20 26)(29 34)(30 35)(31 36)(32 33)(37 59)(38 60)(39 57)(40 58)(45 63)(46 64)(47 61)(48 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 24 17 38)(2 5 18 59)(3 22 19 40)(4 7 20 57)(6 27 60 53)(8 25 58 55)(9 42 29 46)(10 16 30 63)(11 44 31 48)(12 14 32 61)(13 34 64 49)(15 36 62 51)(21 26 39 56)(23 28 37 54)(33 47 52 43)(35 45 50 41)

G:=sub<Sym(64)| (1,29)(2,30)(3,31)(4,32)(5,63)(6,64)(7,61)(8,62)(9,17)(10,18)(11,19)(12,20)(13,60)(14,57)(15,58)(16,59)(21,47)(22,48)(23,45)(24,46)(25,51)(26,52)(27,49)(28,50)(33,56)(34,53)(35,54)(36,55)(37,41)(38,42)(39,43)(40,44), (2,28)(4,26)(6,38)(8,40)(10,35)(12,33)(13,46)(15,48)(18,54)(20,56)(22,58)(24,60)(30,50)(32,52)(42,64)(44,62), (1,27)(2,28)(3,25)(4,26)(5,37)(6,38)(7,39)(8,40)(9,34)(10,35)(11,36)(12,33)(13,46)(14,47)(15,48)(16,45)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(29,49)(30,50)(31,51)(32,52)(41,63)(42,64)(43,61)(44,62), (1,53)(2,54)(3,55)(4,56)(5,23)(6,24)(7,21)(8,22)(9,49)(10,50)(11,51)(12,52)(13,42)(14,43)(15,44)(16,41)(17,27)(18,28)(19,25)(20,26)(29,34)(30,35)(31,36)(32,33)(37,59)(38,60)(39,57)(40,58)(45,63)(46,64)(47,61)(48,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,24,17,38)(2,5,18,59)(3,22,19,40)(4,7,20,57)(6,27,60,53)(8,25,58,55)(9,42,29,46)(10,16,30,63)(11,44,31,48)(12,14,32,61)(13,34,64,49)(15,36,62,51)(21,26,39,56)(23,28,37,54)(33,47,52,43)(35,45,50,41)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,63)(6,64)(7,61)(8,62)(9,17)(10,18)(11,19)(12,20)(13,60)(14,57)(15,58)(16,59)(21,47)(22,48)(23,45)(24,46)(25,51)(26,52)(27,49)(28,50)(33,56)(34,53)(35,54)(36,55)(37,41)(38,42)(39,43)(40,44), (2,28)(4,26)(6,38)(8,40)(10,35)(12,33)(13,46)(15,48)(18,54)(20,56)(22,58)(24,60)(30,50)(32,52)(42,64)(44,62), (1,27)(2,28)(3,25)(4,26)(5,37)(6,38)(7,39)(8,40)(9,34)(10,35)(11,36)(12,33)(13,46)(14,47)(15,48)(16,45)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(29,49)(30,50)(31,51)(32,52)(41,63)(42,64)(43,61)(44,62), (1,53)(2,54)(3,55)(4,56)(5,23)(6,24)(7,21)(8,22)(9,49)(10,50)(11,51)(12,52)(13,42)(14,43)(15,44)(16,41)(17,27)(18,28)(19,25)(20,26)(29,34)(30,35)(31,36)(32,33)(37,59)(38,60)(39,57)(40,58)(45,63)(46,64)(47,61)(48,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,24,17,38)(2,5,18,59)(3,22,19,40)(4,7,20,57)(6,27,60,53)(8,25,58,55)(9,42,29,46)(10,16,30,63)(11,44,31,48)(12,14,32,61)(13,34,64,49)(15,36,62,51)(21,26,39,56)(23,28,37,54)(33,47,52,43)(35,45,50,41) );

G=PermutationGroup([(1,29),(2,30),(3,31),(4,32),(5,63),(6,64),(7,61),(8,62),(9,17),(10,18),(11,19),(12,20),(13,60),(14,57),(15,58),(16,59),(21,47),(22,48),(23,45),(24,46),(25,51),(26,52),(27,49),(28,50),(33,56),(34,53),(35,54),(36,55),(37,41),(38,42),(39,43),(40,44)], [(2,28),(4,26),(6,38),(8,40),(10,35),(12,33),(13,46),(15,48),(18,54),(20,56),(22,58),(24,60),(30,50),(32,52),(42,64),(44,62)], [(1,27),(2,28),(3,25),(4,26),(5,37),(6,38),(7,39),(8,40),(9,34),(10,35),(11,36),(12,33),(13,46),(14,47),(15,48),(16,45),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(29,49),(30,50),(31,51),(32,52),(41,63),(42,64),(43,61),(44,62)], [(1,53),(2,54),(3,55),(4,56),(5,23),(6,24),(7,21),(8,22),(9,49),(10,50),(11,51),(12,52),(13,42),(14,43),(15,44),(16,41),(17,27),(18,28),(19,25),(20,26),(29,34),(30,35),(31,36),(32,33),(37,59),(38,60),(39,57),(40,58),(45,63),(46,64),(47,61),(48,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,24,17,38),(2,5,18,59),(3,22,19,40),(4,7,20,57),(6,27,60,53),(8,25,58,55),(9,42,29,46),(10,16,30,63),(11,44,31,48),(12,14,32,61),(13,34,64,49),(15,36,62,51),(21,26,39,56),(23,28,37,54),(33,47,52,43),(35,45,50,41)])

56 conjugacy classes

class 1 2A···2O2P···2W4A···4P4Q···4AF
order12···22···24···44···4
size11···12···22···24···4

56 irreducible representations

dim11111122
type++++++
imageC1C2C2C2C2C4D4C4○D4
kernelC2×C23.34D4C2×C2.C42C23.34D4C22×C22⋊C4C24×C4C23×C4C24C23
# reps1482116816

Matrix representation of C2×C23.34D4 in GL6(𝔽5)

400000
040000
001000
000100
000040
000004
,
400000
040000
001100
000400
000010
000001
,
100000
010000
004000
000400
000010
000001
,
400000
010000
001000
000100
000040
000004
,
300000
010000
004000
002100
000010
000014
,
200000
010000
002000
001300
000013
000014

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,1,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,1,0,0,0,0,0,0,4,2,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,4],[2,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,0,3,0,0,0,0,0,0,1,1,0,0,0,0,3,4] >;

C2×C23.34D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{34}D_4
% in TeX

G:=Group("C2xC2^3.34D4");
// GroupNames label

G:=SmallGroup(128,1011);
// by ID

G=gap.SmallGroup(128,1011);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,100]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations

׿
×
𝔽