Copied to
clipboard

G = C42.286C23order 128 = 27

147th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.286C23, C82(C4⋊Q8), (C2×C8)⋊16Q8, (C8×Q8)⋊27C2, C8(C84Q8), C4⋊Q8.39C4, C8.45(C2×Q8), C4.21(C4×Q8), C84Q850C2, C82(C22⋊Q8), C8(C42.C2), C4.19(C8○D4), C22.6(C4×Q8), C22⋊Q8.35C4, C4.64(C22×Q8), C4⋊C8.358C22, (C2×C4).657C24, (C4×C8).329C22, C42.286(C2×C4), (C2×C8).640C23, C42.C2.27C4, C82(C4⋊M4(2)), (C4×Q8).277C22, C8⋊C4.158C22, C82M4(2).22C2, C4⋊M4(2).39C2, C22.183(C23×C4), C23.142(C22×C4), (C22×C8).514C22, C8(C23.37C23), C82(C42.6C22), (C22×C4).1519C23, (C2×C42).1117C22, C42⋊C2.303C22, (C2×M4(2)).360C22, C42.6C22.15C2, C23.37C23.47C2, (C2×C4×C8).69C2, (C2×C8)(C4⋊Q8), C2.24(C2×C4×Q8), C2.21(C2×C8○D4), C4⋊C4.162(C2×C4), C4.308(C2×C4○D4), (C2×C4).242(C2×Q8), C22⋊C4.38(C2×C4), (C2×C4).74(C22×C4), (C2×Q8).163(C2×C4), (C2×C4).695(C4○D4), (C22×C4).419(C2×C4), (C2×C8)(C23.37C23), SmallGroup(128,1692)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.286C23
C1C2C4C2×C4C22×C4C22×C8C2×C4×C8 — C42.286C23
C1C22 — C42.286C23
C1C2×C8 — C42.286C23
C1C2C2C2×C4 — C42.286C23

Generators and relations for C42.286C23
 G = < a,b,c,d,e | a4=b4=e2=1, c2=a2, d2=b, ab=ba, cac-1=a-1b2, ad=da, eae=ab2, bc=cb, bd=db, be=eb, dcd-1=a2b2c, ce=ec, ede=b2d >

Subgroups: 220 in 182 conjugacy classes, 144 normal (20 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×2], C4 [×6], C4 [×10], C22, C22 [×2], C22 [×2], C8 [×4], C8 [×6], C2×C4 [×2], C2×C4 [×16], C2×C4 [×4], Q8 [×8], C23, C42 [×2], C42 [×6], C22⋊C4 [×4], C4⋊C4 [×16], C2×C8 [×2], C2×C8 [×10], C2×C8 [×2], M4(2) [×4], C22×C4, C22×C4 [×2], C2×Q8 [×4], C4×C8 [×8], C8⋊C4 [×4], C4⋊C8 [×12], C2×C42, C42⋊C2 [×2], C4×Q8 [×4], C22⋊Q8 [×4], C42.C2 [×2], C4⋊Q8 [×2], C22×C8 [×2], C2×M4(2) [×2], C2×C4×C8, C82M4(2) [×2], C4⋊M4(2), C42.6C22 [×2], C8×Q8 [×4], C84Q8 [×4], C23.37C23, C42.286C23
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], Q8 [×4], C23 [×15], C22×C4 [×14], C2×Q8 [×6], C4○D4 [×2], C24, C4×Q8 [×4], C8○D4 [×4], C23×C4, C22×Q8, C2×C4○D4, C2×C4×Q8, C2×C8○D4 [×2], C42.286C23

Smallest permutation representation of C42.286C23
On 64 points
Generators in S64
(1 50 61 21)(2 51 62 22)(3 52 63 23)(4 53 64 24)(5 54 57 17)(6 55 58 18)(7 56 59 19)(8 49 60 20)(9 36 26 42)(10 37 27 43)(11 38 28 44)(12 39 29 45)(13 40 30 46)(14 33 31 47)(15 34 32 48)(16 35 25 41)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 39 61 45)(2 42 62 36)(3 33 63 47)(4 44 64 38)(5 35 57 41)(6 46 58 40)(7 37 59 43)(8 48 60 34)(9 55 26 18)(10 23 27 52)(11 49 28 20)(12 17 29 54)(13 51 30 22)(14 19 31 56)(15 53 32 24)(16 21 25 50)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)(42 46)(44 48)(50 54)(52 56)(58 62)(60 64)

G:=sub<Sym(64)| (1,50,61,21)(2,51,62,22)(3,52,63,23)(4,53,64,24)(5,54,57,17)(6,55,58,18)(7,56,59,19)(8,49,60,20)(9,36,26,42)(10,37,27,43)(11,38,28,44)(12,39,29,45)(13,40,30,46)(14,33,31,47)(15,34,32,48)(16,35,25,41), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,39,61,45)(2,42,62,36)(3,33,63,47)(4,44,64,38)(5,35,57,41)(6,46,58,40)(7,37,59,43)(8,48,60,34)(9,55,26,18)(10,23,27,52)(11,49,28,20)(12,17,29,54)(13,51,30,22)(14,19,31,56)(15,53,32,24)(16,21,25,50), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64)>;

G:=Group( (1,50,61,21)(2,51,62,22)(3,52,63,23)(4,53,64,24)(5,54,57,17)(6,55,58,18)(7,56,59,19)(8,49,60,20)(9,36,26,42)(10,37,27,43)(11,38,28,44)(12,39,29,45)(13,40,30,46)(14,33,31,47)(15,34,32,48)(16,35,25,41), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,39,61,45)(2,42,62,36)(3,33,63,47)(4,44,64,38)(5,35,57,41)(6,46,58,40)(7,37,59,43)(8,48,60,34)(9,55,26,18)(10,23,27,52)(11,49,28,20)(12,17,29,54)(13,51,30,22)(14,19,31,56)(15,53,32,24)(16,21,25,50), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64) );

G=PermutationGroup([(1,50,61,21),(2,51,62,22),(3,52,63,23),(4,53,64,24),(5,54,57,17),(6,55,58,18),(7,56,59,19),(8,49,60,20),(9,36,26,42),(10,37,27,43),(11,38,28,44),(12,39,29,45),(13,40,30,46),(14,33,31,47),(15,34,32,48),(16,35,25,41)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,39,61,45),(2,42,62,36),(3,33,63,47),(4,44,64,38),(5,35,57,41),(6,46,58,40),(7,37,59,43),(8,48,60,34),(9,55,26,18),(10,23,27,52),(11,49,28,20),(12,17,29,54),(13,51,30,22),(14,19,31,56),(15,53,32,24),(16,21,25,50)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40),(42,46),(44,48),(50,54),(52,56),(58,62),(60,64)])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N4O···4V8A···8H8I···8T8U···8AB
order12222244444···44···48···88···88···8
size11112211112···24···41···12···24···4

56 irreducible representations

dim11111111111222
type++++++++-
imageC1C2C2C2C2C2C2C2C4C4C4Q8C4○D4C8○D4
kernelC42.286C23C2×C4×C8C82M4(2)C4⋊M4(2)C42.6C22C8×Q8C84Q8C23.37C23C22⋊Q8C42.C2C4⋊Q8C2×C8C2×C4C4
# reps112124418444416

Matrix representation of C42.286C23 in GL4(𝔽17) generated by

01500
8000
00916
00148
,
4000
0400
00130
00013
,
1000
01600
0040
0004
,
01300
16000
00162
0061
,
1000
01600
0010
00116
G:=sub<GL(4,GF(17))| [0,8,0,0,15,0,0,0,0,0,9,14,0,0,16,8],[4,0,0,0,0,4,0,0,0,0,13,0,0,0,0,13],[1,0,0,0,0,16,0,0,0,0,4,0,0,0,0,4],[0,16,0,0,13,0,0,0,0,0,16,6,0,0,2,1],[1,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;

C42.286C23 in GAP, Magma, Sage, TeX

C_4^2._{286}C_2^3
% in TeX

G:=Group("C4^2.286C2^3");
// GroupNames label

G:=SmallGroup(128,1692);
// by ID

G=gap.SmallGroup(128,1692);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,268,2019,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=a^2,d^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,a*d=d*a,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*b^2*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations

׿
×
𝔽