Copied to
clipboard

G = C42.443D4order 128 = 27

76th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.443D4, C42.320C23, C4○D48D4, C4(C4⋊D8), C45(C4○D8), D4.3(C2×D4), Q8.3(C2×D4), C4⋊D845C2, C4(C4⋊SD16), C4(C42Q16), C4⋊SD1647C2, C42Q1647C2, C4(D4.2D4), C4(D4.D4), C4(Q8.D4), C4.66(C22×D4), D4.2D452C2, D4.D448C2, C4⋊C8.281C22, C4⋊C4.376C23, (C2×C4).239C24, (C2×C8).135C23, Q8.D452C2, (C2×D4).48C23, (C22×C4).421D4, C23.382(C2×D4), C4⋊Q8.255C22, (C2×Q8).35C23, C4.210(C4⋊D4), (C2×D8).117C22, (C4×D4).309C22, (C4×Q8).290C22, C23.24D415C2, C41D4.136C22, C22.13(C4⋊D4), C22.26C242C2, (C22×C8).177C22, (C2×C42).808C22, (C2×Q16).116C22, C22.499(C22×D4), D4⋊C4.155C22, C2.10(D8⋊C22), (C22×C4).1529C23, Q8⋊C4.145C22, (C2×SD16).133C22, C4.4D4.125C22, C42⋊C2.310C22, (C2×C4⋊C8)⋊27C2, (C2×C4○D8)⋊5C2, (C4×C4○D4)⋊6C2, (C2×C4)(C4⋊D8), C2.12(C2×C4○D8), (C2×C4)(C4⋊SD16), (C2×C4)(C42Q16), C4.149(C2×C4○D4), C2.57(C2×C4⋊D4), (C2×C4)(D4.2D4), (C2×C4).1418(C2×D4), (C2×C4)(Q8.D4), (C2×C4).906(C4○D4), (C2×C4○D4).114C22, SmallGroup(128,1767)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.443D4
C1C2C4C2×C4C22×C4C2×C4○D4C4×C4○D4 — C42.443D4
C1C2C2×C4 — C42.443D4
C1C2×C4C2×C42 — C42.443D4
C1C2C2C2×C4 — C42.443D4

Generators and relations for C42.443D4
 G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, cac-1=dad=a-1, bc=cb, bd=db, dcd=b2c3 >

Subgroups: 468 in 248 conjugacy classes, 102 normal (44 characteristic)
C1, C2 [×3], C2 [×6], C4 [×2], C4 [×4], C4 [×9], C22, C22 [×2], C22 [×12], C8 [×4], C2×C4 [×6], C2×C4 [×4], C2×C4 [×20], D4 [×2], D4 [×17], Q8 [×2], Q8 [×5], C23, C23 [×3], C42 [×4], C42 [×3], C22⋊C4 [×7], C4⋊C4 [×2], C4⋊C4 [×4], C2×C8 [×4], C2×C8 [×4], D8 [×4], SD16 [×8], Q16 [×4], C22×C4 [×3], C22×C4 [×5], C2×D4, C2×D4 [×2], C2×D4 [×5], C2×Q8, C2×Q8 [×2], C4○D4 [×4], C4○D4 [×10], D4⋊C4 [×4], Q8⋊C4 [×4], C4⋊C8 [×2], C4⋊C8 [×2], C2×C42, C2×C42, C42⋊C2, C42⋊C2, C4×D4 [×2], C4×D4 [×4], C4×Q8 [×2], C4⋊D4 [×2], C4.4D4 [×2], C41D4, C4⋊Q8, C22×C8 [×2], C2×D8 [×2], C2×SD16 [×4], C2×Q16 [×2], C4○D8 [×8], C2×C4○D4, C2×C4○D4 [×2], C23.24D4 [×2], C2×C4⋊C8, C4⋊D8, C4⋊SD16, D4.D4, C42Q16, D4.2D4 [×2], Q8.D4 [×2], C4×C4○D4, C22.26C24, C2×C4○D8 [×2], C42.443D4
Quotients: C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×2], C24, C4⋊D4 [×4], C4○D8 [×2], C22×D4 [×2], C2×C4○D4, C2×C4⋊D4, C2×C4○D8, D8⋊C22, C42.443D4

Smallest permutation representation of C42.443D4
On 64 points
Generators in S64
(1 50 29 61)(2 62 30 51)(3 52 31 63)(4 64 32 53)(5 54 25 57)(6 58 26 55)(7 56 27 59)(8 60 28 49)(9 21 38 43)(10 44 39 22)(11 23 40 45)(12 46 33 24)(13 17 34 47)(14 48 35 18)(15 19 36 41)(16 42 37 20)
(1 14 5 10)(2 15 6 11)(3 16 7 12)(4 9 8 13)(17 64 21 60)(18 57 22 61)(19 58 23 62)(20 59 24 63)(25 39 29 35)(26 40 30 36)(27 33 31 37)(28 34 32 38)(41 55 45 51)(42 56 46 52)(43 49 47 53)(44 50 48 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 41)(18 48)(19 47)(20 46)(21 45)(22 44)(23 43)(24 42)(26 32)(27 31)(28 30)(33 37)(34 36)(38 40)(49 62)(50 61)(51 60)(52 59)(53 58)(54 57)(55 64)(56 63)

G:=sub<Sym(64)| (1,50,29,61)(2,62,30,51)(3,52,31,63)(4,64,32,53)(5,54,25,57)(6,58,26,55)(7,56,27,59)(8,60,28,49)(9,21,38,43)(10,44,39,22)(11,23,40,45)(12,46,33,24)(13,17,34,47)(14,48,35,18)(15,19,36,41)(16,42,37,20), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,64,21,60)(18,57,22,61)(19,58,23,62)(20,59,24,63)(25,39,29,35)(26,40,30,36)(27,33,31,37)(28,34,32,38)(41,55,45,51)(42,56,46,52)(43,49,47,53)(44,50,48,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,41)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42)(26,32)(27,31)(28,30)(33,37)(34,36)(38,40)(49,62)(50,61)(51,60)(52,59)(53,58)(54,57)(55,64)(56,63)>;

G:=Group( (1,50,29,61)(2,62,30,51)(3,52,31,63)(4,64,32,53)(5,54,25,57)(6,58,26,55)(7,56,27,59)(8,60,28,49)(9,21,38,43)(10,44,39,22)(11,23,40,45)(12,46,33,24)(13,17,34,47)(14,48,35,18)(15,19,36,41)(16,42,37,20), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,64,21,60)(18,57,22,61)(19,58,23,62)(20,59,24,63)(25,39,29,35)(26,40,30,36)(27,33,31,37)(28,34,32,38)(41,55,45,51)(42,56,46,52)(43,49,47,53)(44,50,48,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,41)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42)(26,32)(27,31)(28,30)(33,37)(34,36)(38,40)(49,62)(50,61)(51,60)(52,59)(53,58)(54,57)(55,64)(56,63) );

G=PermutationGroup([(1,50,29,61),(2,62,30,51),(3,52,31,63),(4,64,32,53),(5,54,25,57),(6,58,26,55),(7,56,27,59),(8,60,28,49),(9,21,38,43),(10,44,39,22),(11,23,40,45),(12,46,33,24),(13,17,34,47),(14,48,35,18),(15,19,36,41),(16,42,37,20)], [(1,14,5,10),(2,15,6,11),(3,16,7,12),(4,9,8,13),(17,64,21,60),(18,57,22,61),(19,58,23,62),(20,59,24,63),(25,39,29,35),(26,40,30,36),(27,33,31,37),(28,34,32,38),(41,55,45,51),(42,56,46,52),(43,49,47,53),(44,50,48,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,41),(18,48),(19,47),(20,46),(21,45),(22,44),(23,43),(24,42),(26,32),(27,31),(28,30),(33,37),(34,36),(38,40),(49,62),(50,61),(51,60),(52,59),(53,58),(54,57),(55,64),(56,63)])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E···4J4K···4R4S4T8A···8H
order122222222244444···44···4448···8
size111122448811112···24···4884···4

38 irreducible representations

dim111111111111222224
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4C4○D4C4○D8D8⋊C22
kernelC42.443D4C23.24D4C2×C4⋊C8C4⋊D8C4⋊SD16D4.D4C42Q16D4.2D4Q8.D4C4×C4○D4C22.26C24C2×C4○D8C42C22×C4C4○D4C2×C4C4C2
# reps121111122112224482

Matrix representation of C42.443D4 in GL4(𝔽17) generated by

0400
4000
00160
00016
,
1000
0100
00130
00013
,
01600
1000
00143
001414
,
1000
01600
0010
00016
G:=sub<GL(4,GF(17))| [0,4,0,0,4,0,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,13,0,0,0,0,13],[0,1,0,0,16,0,0,0,0,0,14,14,0,0,3,14],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;

C42.443D4 in GAP, Magma, Sage, TeX

C_4^2._{443}D_4
% in TeX

G:=Group("C4^2.443D4");
// GroupNames label

G:=SmallGroup(128,1767);
// by ID

G=gap.SmallGroup(128,1767);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=b^2*c^3>;
// generators/relations

׿
×
𝔽