Extensions 1→N→G→Q→1 with N=C22 and Q=Dic12

Direct product G=N×Q with N=C22 and Q=Dic12

Semidirect products G=N:Q with N=C22 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C22⋊Dic12 = A4⋊Q16φ: Dic12/C8S3 ⊆ Aut C22486-C2^2:Dic12192,957
C222Dic12 = C24.82D4φ: Dic12/C24C2 ⊆ Aut C2296C2^2:2Dic12192,675
C223Dic12 = Dic6.32D4φ: Dic12/Dic6C2 ⊆ Aut C2296C2^2:3Dic12192,298

Non-split extensions G=N.Q with N=C22 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C22.1Dic12 = C48.C4φ: Dic12/C24C2 ⊆ Aut C22962C2^2.1Dic12192,65
C22.2Dic12 = C23.35D12φ: Dic12/Dic6C2 ⊆ Aut C2248C2^2.2Dic12192,26
C22.3Dic12 = C23.40D12φ: Dic12/Dic6C2 ⊆ Aut C2296C2^2.3Dic12192,281
C22.4Dic12 = C12.9C42central extension (φ=1)192C2^2.4Dic12192,110
C22.5Dic12 = C2×C2.Dic12central extension (φ=1)192C2^2.5Dic12192,662
C22.6Dic12 = C2×C241C4central extension (φ=1)192C2^2.6Dic12192,664