# Extensions 1→N→G→Q→1 with N=S3×C23 and Q=C4

Direct product G=N×Q with N=S3×C23 and Q=C4
dρLabelID
S3×C23×C496S3xC2^3xC4192,1511

Semidirect products G=N:Q with N=S3×C23 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C23)⋊1C4 = C3⋊C2≀C4φ: C4/C1C4 ⊆ Out S3×C23248+(S3xC2^3):1C4192,30
(S3×C23)⋊2C4 = C23.3D12φ: C4/C1C4 ⊆ Out S3×C23248+(S3xC2^3):2C4192,34
(S3×C23)⋊3C4 = S3×C23⋊C4φ: C4/C1C4 ⊆ Out S3×C23248+(S3xC2^3):3C4192,302
(S3×C23)⋊4C4 = C2×C23.6D6φ: C4/C1C4 ⊆ Out S3×C2348(S3xC2^3):4C4192,513
(S3×C23)⋊5C4 = C24.59D6φ: C4/C2C2 ⊆ Out S3×C2348(S3xC2^3):5C4192,514
(S3×C23)⋊6C4 = C2×S3×C22⋊C4φ: C4/C2C2 ⊆ Out S3×C2348(S3xC2^3):6C4192,1043
(S3×C23)⋊7C4 = C22×D6⋊C4φ: C4/C2C2 ⊆ Out S3×C2396(S3xC2^3):7C4192,1346

Non-split extensions G=N.Q with N=S3×C23 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C23).1C4 = (C22×S3)⋊C8φ: C4/C1C4 ⊆ Out S3×C2348(S3xC2^3).1C4192,27
(S3×C23).2C4 = S3×C4.D4φ: C4/C1C4 ⊆ Out S3×C23248+(S3xC2^3).2C4192,303
(S3×C23).3C4 = C2×C12.46D4φ: C4/C1C4 ⊆ Out S3×C2348(S3xC2^3).3C4192,689
(S3×C23).4C4 = S3×C22⋊C8φ: C4/C2C2 ⊆ Out S3×C2348(S3xC2^3).4C4192,283
(S3×C23).5C4 = D6⋊M4(2)φ: C4/C2C2 ⊆ Out S3×C2348(S3xC2^3).5C4192,285
(S3×C23).6C4 = C2×D6⋊C8φ: C4/C2C2 ⊆ Out S3×C2396(S3xC2^3).6C4192,667
(S3×C23).7C4 = D66M4(2)φ: C4/C2C2 ⊆ Out S3×C2348(S3xC2^3).7C4192,685
(S3×C23).8C4 = C22×C8⋊S3φ: C4/C2C2 ⊆ Out S3×C2396(S3xC2^3).8C4192,1296
(S3×C23).9C4 = C2×S3×M4(2)φ: C4/C2C2 ⊆ Out S3×C2348(S3xC2^3).9C4192,1302
(S3×C23).10C4 = S3×C22×C8φ: trivial image96(S3xC2^3).10C4192,1295

׿
×
𝔽