# Extensions 1→N→G→Q→1 with N=C22 and Q=C6×D5

Direct product G=N×Q with N=C22 and Q=C6×D5
dρLabelID
D5×C22×C6120D5xC2^2xC6240,205

Semidirect products G=N:Q with N=C22 and Q=C6×D5
extensionφ:Q→Aut NdρLabelID
C22⋊(C6×D5) = C2×D5×A4φ: C6×D5/D10C3 ⊆ Aut C22306+C2^2:(C6xD5)240,198
C222(C6×D5) = C3×D4×D5φ: C6×D5/C3×D5C2 ⊆ Aut C22604C2^2:2(C6xD5)240,159
C223(C6×D5) = C6×C5⋊D4φ: C6×D5/C30C2 ⊆ Aut C22120C2^2:3(C6xD5)240,164

Non-split extensions G=N.Q with N=C22 and Q=C6×D5
extensionφ:Q→Aut NdρLabelID
C22.1(C6×D5) = C3×D42D5φ: C6×D5/C3×D5C2 ⊆ Aut C221204C2^2.1(C6xD5)240,160
C22.2(C6×D5) = C3×C4○D20φ: C6×D5/C30C2 ⊆ Aut C221202C2^2.2(C6xD5)240,158
C22.3(C6×D5) = C12×Dic5central extension (φ=1)240C2^2.3(C6xD5)240,40
C22.4(C6×D5) = C3×C10.D4central extension (φ=1)240C2^2.4(C6xD5)240,41
C22.5(C6×D5) = C3×C4⋊Dic5central extension (φ=1)240C2^2.5(C6xD5)240,42
C22.6(C6×D5) = C3×D10⋊C4central extension (φ=1)120C2^2.6(C6xD5)240,43
C22.7(C6×D5) = C3×C23.D5central extension (φ=1)120C2^2.7(C6xD5)240,48
C22.8(C6×D5) = C6×Dic10central extension (φ=1)240C2^2.8(C6xD5)240,155
C22.9(C6×D5) = D5×C2×C12central extension (φ=1)120C2^2.9(C6xD5)240,156
C22.10(C6×D5) = C6×D20central extension (φ=1)120C2^2.10(C6xD5)240,157
C22.11(C6×D5) = C2×C6×Dic5central extension (φ=1)240C2^2.11(C6xD5)240,163

׿
×
𝔽