Extensions 1→N→G→Q→1 with N=C7⋊D4 and Q=C22

Direct product G=N×Q with N=C7⋊D4 and Q=C22

Semidirect products G=N:Q with N=C7⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C7⋊D41C22 = C2×D4×D7φ: C22/C2C2 ⊆ Out C7⋊D456C7:D4:1C2^2224,178
C7⋊D42C22 = C2×D42D7φ: C22/C2C2 ⊆ Out C7⋊D4112C7:D4:2C2^2224,179
C7⋊D43C22 = D46D14φ: C22/C2C2 ⊆ Out C7⋊D4564C7:D4:3C2^2224,180
C7⋊D44C22 = D7×C4○D4φ: C22/C2C2 ⊆ Out C7⋊D4564C7:D4:4C2^2224,184
C7⋊D45C22 = D48D14φ: C22/C2C2 ⊆ Out C7⋊D4564+C7:D4:5C2^2224,185
C7⋊D46C22 = C2×C4○D28φ: trivial image112C7:D4:6C2^2224,177

Non-split extensions G=N.Q with N=C7⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
C7⋊D4.C22 = D4.10D14φ: C22/C2C2 ⊆ Out C7⋊D41124-C7:D4.C2^2224,186
C7⋊D4.2C22 = Q8.10D14φ: trivial image1124C7:D4.2C2^2224,183