# Extensions 1→N→G→Q→1 with N=C23 and Q=C3×Dic3

Direct product G=N×Q with N=C23 and Q=C3×Dic3
dρLabelID
Dic3×C22×C696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C23 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C23⋊(C3×Dic3) = C6×A4⋊C4φ: C3×Dic3/C6S3 ⊆ Aut C2372C2^3:(C3xDic3)288,905
C232(C3×Dic3) = C3×C23.7D6φ: C3×Dic3/C32C4 ⊆ Aut C23244C2^3:2(C3xDic3)288,268
C233(C3×Dic3) = C2×Dic3×A4φ: C3×Dic3/Dic3C3 ⊆ Aut C2372C2^3:3(C3xDic3)288,927
C234(C3×Dic3) = C6×C6.D4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2348C2^3:4(C3xDic3)288,723

Non-split extensions G=N.Q with N=C23 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C23.(C3×Dic3) = C3×A4⋊C8φ: C3×Dic3/C6S3 ⊆ Aut C23723C2^3.(C3xDic3)288,398
C23.2(C3×Dic3) = C3×C12.D4φ: C3×Dic3/C32C4 ⊆ Aut C23244C2^3.2(C3xDic3)288,267
C23.3(C3×Dic3) = A4×C3⋊C8φ: C3×Dic3/Dic3C3 ⊆ Aut C23726C2^3.3(C3xDic3)288,408
C23.4(C3×Dic3) = C3×C12.55D4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2348C2^3.4(C3xDic3)288,264
C23.5(C3×Dic3) = C6×C4.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C2348C2^3.5(C3xDic3)288,692
C23.6(C3×Dic3) = C2×C6×C3⋊C8central extension (φ=1)96C2^3.6(C3xDic3)288,691

׿
×
𝔽