Extensions 1→N→G→Q→1 with N=C4 and Q=C322Q8

Direct product G=N×Q with N=C4 and Q=C322Q8

Semidirect products G=N:Q with N=C4 and Q=C322Q8
extensionφ:Q→Aut NdρLabelID
C41(C322Q8) = C123Dic6φ: C322Q8/C3×Dic3C2 ⊆ Aut C496C4:1(C3^2:2Q8)288,566
C42(C322Q8) = C12⋊Dic6φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C496C4:2(C3^2:2Q8)288,567

Non-split extensions G=N.Q with N=C4 and Q=C322Q8
extensionφ:Q→Aut NdρLabelID
C4.1(C322Q8) = C12.Dic6φ: C322Q8/C3×Dic3C2 ⊆ Aut C496C4.1(C3^2:2Q8)288,221
C4.2(C322Q8) = C6.18D24φ: C322Q8/C3×Dic3C2 ⊆ Aut C496C4.2(C3^2:2Q8)288,223
C4.3(C322Q8) = C62.39C23φ: C322Q8/C3×Dic3C2 ⊆ Aut C496C4.3(C3^2:2Q8)288,517
C4.4(C322Q8) = C12.6Dic6φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C496C4.4(C3^2:2Q8)288,222
C4.5(C322Q8) = C12.8Dic6φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C496C4.5(C3^2:2Q8)288,224
C4.6(C322Q8) = C62.42C23φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C496C4.6(C3^2:2Q8)288,520
C4.7(C322Q8) = C12.81D12central extension (φ=1)96C4.7(C3^2:2Q8)288,219
C4.8(C322Q8) = C12.15Dic6central extension (φ=1)96C4.8(C3^2:2Q8)288,220