Extensions 1→N→G→Q→1 with N=C22 and Q=C322Q8

Direct product G=N×Q with N=C22 and Q=C322Q8

Semidirect products G=N:Q with N=C22 and Q=C322Q8
extensionφ:Q→Aut NdρLabelID
C22⋊(C322Q8) = Dic3.S4φ: C322Q8/Dic3S3 ⊆ Aut C22726-C2^2:(C3^2:2Q8)288,852
C222(C322Q8) = C623Q8φ: C322Q8/C3×Dic3C2 ⊆ Aut C2248C2^2:2(C3^2:2Q8)288,612
C223(C322Q8) = C624Q8φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C2248C2^2:3(C3^2:2Q8)288,630

Non-split extensions G=N.Q with N=C22 and Q=C322Q8
extensionφ:Q→Aut NdρLabelID
C22.1(C322Q8) = C12.82D12φ: C322Q8/C3×Dic3C2 ⊆ Aut C22484C2^2.1(C3^2:2Q8)288,225
C22.2(C322Q8) = C62.5Q8φ: C322Q8/C3⋊Dic3C2 ⊆ Aut C22484C2^2.2(C3^2:2Q8)288,226
C22.3(C322Q8) = C62.6Q8central extension (φ=1)96C2^2.3(C3^2:2Q8)288,227
C22.4(C322Q8) = C2×Dic3⋊Dic3central extension (φ=1)96C2^2.4(C3^2:2Q8)288,613
C22.5(C322Q8) = C2×C62.C22central extension (φ=1)96C2^2.5(C3^2:2Q8)288,615