Extensions 1→N→G→Q→1 with N=C22 and Q=C3×Dic6

Direct product G=N×Q with N=C22 and Q=C3×Dic6

Semidirect products G=N:Q with N=C22 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×Dic6) = C3×A4⋊Q8φ: C3×Dic6/C12S3 ⊆ Aut C22726C2^2:(C3xDic6)288,896
C222(C3×Dic6) = A4×Dic6φ: C3×Dic6/Dic6C3 ⊆ Aut C22726-C2^2:2(C3xDic6)288,918
C223(C3×Dic6) = C3×Dic3.D4φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C2248C2^2:3(C3xDic6)288,649
C224(C3×Dic6) = C3×C12.48D4φ: C3×Dic6/C3×C12C2 ⊆ Aut C2248C2^2:4(C3xDic6)288,695

Non-split extensions G=N.Q with N=C22 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C22.1(C3×Dic6) = C3×C12.53D4φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C22484C2^2.1(C3xDic6)288,256
C22.2(C3×Dic6) = C3×C24.C4φ: C3×Dic6/C3×C12C2 ⊆ Aut C22482C2^2.2(C3xDic6)288,253
C22.3(C3×Dic6) = C3×C6.C42central extension (φ=1)96C2^2.3(C3xDic6)288,265
C22.4(C3×Dic6) = C6×Dic3⋊C4central extension (φ=1)96C2^2.4(C3xDic6)288,694
C22.5(C3×Dic6) = C6×C4⋊Dic3central extension (φ=1)96C2^2.5(C3xDic6)288,696