# Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C12

Direct product G=N×Q with N=C22 and Q=S3×C12
dρLabelID
S3×C22×C1296S3xC2^2xC12288,989

Semidirect products G=N:Q with N=C22 and Q=S3×C12
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C12) = C12×S4φ: S3×C12/C12S3 ⊆ Aut C22363C2^2:(S3xC12)288,897
C222(S3×C12) = C4×S3×A4φ: S3×C12/C4×S3C3 ⊆ Aut C22366C2^2:2(S3xC12)288,919
C223(S3×C12) = C3×Dic34D4φ: S3×C12/C3×Dic3C2 ⊆ Aut C2248C2^2:3(S3xC12)288,652
C224(S3×C12) = C12×C3⋊D4φ: S3×C12/C3×C12C2 ⊆ Aut C2248C2^2:4(S3xC12)288,699
C225(S3×C12) = C3×S3×C22⋊C4φ: S3×C12/S3×C6C2 ⊆ Aut C2248C2^2:5(S3xC12)288,651

Non-split extensions G=N.Q with N=C22 and Q=S3×C12
extensionφ:Q→Aut NdρLabelID
C22.1(S3×C12) = C3×D12.C4φ: S3×C12/C3×Dic3C2 ⊆ Aut C22484C2^2.1(S3xC12)288,678
C22.2(S3×C12) = C3×C8○D12φ: S3×C12/C3×C12C2 ⊆ Aut C22482C2^2.2(S3xC12)288,672
C22.3(S3×C12) = C3×C23.6D6φ: S3×C12/S3×C6C2 ⊆ Aut C22244C2^2.3(S3xC12)288,240
C22.4(S3×C12) = C3×C12.46D4φ: S3×C12/S3×C6C2 ⊆ Aut C22484C2^2.4(S3xC12)288,257
C22.5(S3×C12) = C3×C12.47D4φ: S3×C12/S3×C6C2 ⊆ Aut C22484C2^2.5(S3xC12)288,258
C22.6(S3×C12) = C3×C23.16D6φ: S3×C12/S3×C6C2 ⊆ Aut C2248C2^2.6(S3xC12)288,648
C22.7(S3×C12) = C3×S3×M4(2)φ: S3×C12/S3×C6C2 ⊆ Aut C22484C2^2.7(S3xC12)288,677
C22.8(S3×C12) = Dic3×C24central extension (φ=1)96C2^2.8(S3xC12)288,247
C22.9(S3×C12) = C3×Dic3⋊C8central extension (φ=1)96C2^2.9(S3xC12)288,248
C22.10(S3×C12) = C3×C24⋊C4central extension (φ=1)96C2^2.10(S3xC12)288,249
C22.11(S3×C12) = C3×D6⋊C8central extension (φ=1)96C2^2.11(S3xC12)288,254
C22.12(S3×C12) = C3×C6.C42central extension (φ=1)96C2^2.12(S3xC12)288,265
C22.13(S3×C12) = S3×C2×C24central extension (φ=1)96C2^2.13(S3xC12)288,670
C22.14(S3×C12) = C6×C8⋊S3central extension (φ=1)96C2^2.14(S3xC12)288,671
C22.15(S3×C12) = Dic3×C2×C12central extension (φ=1)96C2^2.15(S3xC12)288,693
C22.16(S3×C12) = C6×Dic3⋊C4central extension (φ=1)96C2^2.16(S3xC12)288,694
C22.17(S3×C12) = C6×D6⋊C4central extension (φ=1)96C2^2.17(S3xC12)288,698

׿
×
𝔽