# Extensions 1→N→G→Q→1 with N=C22 and Q=C6×Dic3

Direct product G=N×Q with N=C22 and Q=C6×Dic3
dρLabelID
Dic3×C22×C696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C22 and Q=C6×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C6×Dic3) = C6×A4⋊C4φ: C6×Dic3/C2×C6S3 ⊆ Aut C2272C2^2:(C6xDic3)288,905
C222(C6×Dic3) = C2×Dic3×A4φ: C6×Dic3/C2×Dic3C3 ⊆ Aut C2272C2^2:2(C6xDic3)288,927
C223(C6×Dic3) = C3×D4×Dic3φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C2248C2^2:3(C6xDic3)288,705
C224(C6×Dic3) = C6×C6.D4φ: C6×Dic3/C62C2 ⊆ Aut C2248C2^2:4(C6xDic3)288,723

Non-split extensions G=N.Q with N=C22 and Q=C6×Dic3
extensionφ:Q→Aut NdρLabelID
C22.1(C6×Dic3) = C3×D4.Dic3φ: C6×Dic3/C3×Dic3C2 ⊆ Aut C22484C2^2.1(C6xDic3)288,719
C22.2(C6×Dic3) = C3×C12.D4φ: C6×Dic3/C62C2 ⊆ Aut C22244C2^2.2(C6xDic3)288,267
C22.3(C6×Dic3) = C3×C23.7D6φ: C6×Dic3/C62C2 ⊆ Aut C22244C2^2.3(C6xDic3)288,268
C22.4(C6×Dic3) = C3×C12.10D4φ: C6×Dic3/C62C2 ⊆ Aut C22484C2^2.4(C6xDic3)288,270
C22.5(C6×Dic3) = C6×C4.Dic3φ: C6×Dic3/C62C2 ⊆ Aut C2248C2^2.5(C6xDic3)288,692
C22.6(C6×Dic3) = C3×C23.26D6φ: C6×Dic3/C62C2 ⊆ Aut C2248C2^2.6(C6xDic3)288,697
C22.7(C6×Dic3) = C12×C3⋊C8central extension (φ=1)96C2^2.7(C6xDic3)288,236
C22.8(C6×Dic3) = C3×C42.S3central extension (φ=1)96C2^2.8(C6xDic3)288,237
C22.9(C6×Dic3) = C3×C12⋊C8central extension (φ=1)96C2^2.9(C6xDic3)288,238
C22.10(C6×Dic3) = C3×C12.55D4central extension (φ=1)48C2^2.10(C6xDic3)288,264
C22.11(C6×Dic3) = C3×C6.C42central extension (φ=1)96C2^2.11(C6xDic3)288,265
C22.12(C6×Dic3) = C2×C6×C3⋊C8central extension (φ=1)96C2^2.12(C6xDic3)288,691
C22.13(C6×Dic3) = Dic3×C2×C12central extension (φ=1)96C2^2.13(C6xDic3)288,693
C22.14(C6×Dic3) = C6×C4⋊Dic3central extension (φ=1)96C2^2.14(C6xDic3)288,696

׿
×
𝔽